首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
测绘学   1篇
大气科学   6篇
地球物理   22篇
地质学   38篇
海洋学   4篇
自然地理   1篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   3篇
  2015年   5篇
  2014年   5篇
  2013年   6篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   2篇
  2006年   5篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1991年   1篇
排序方式: 共有72条查询结果,搜索用时 62 毫秒
61.
This paper presents a novel platform to study the dampening of water and solute transport in an experimental channel under unsteady flow conditions, where literature data are scarce. We address the question about what could be the smallest size of experimental platform that is useful for research, project studies, and teaching activities and that allows to do rational experiments characterized by small space occupation, short experimental duration, high measurement precision, high quality and reproducible experimental curves, low water and energy consumption, and the possibility to test a large variety of hydrograph scenarios. Whereas large scale hydraulic laboratories have focused their studies on sediment transport, our platform deals with solute transport. The objectives of our study are (a) building a platform that allows to do rational experiments, (b) enriching the lack of experimental data concerning water and solute transport under unsteady state conditions, and (c) studying the dampening of water and solute transport. We studied solute transport in a channel with lateral gain and lateral loss under different experimental configurations, and we show how the same lateral loss flow event can lead to different lateral loss mass repartitions under different configurations. In order to characterize water and solute dampening between the input and the output of the channel, we calculate dampening ratios based on peak coordinates of time flow curves and time mass curves and that express the decrease of peak amplitude and the increase of peak occurrence time between the input and output curves. Finally, we use a solute transport model coupling the diffusive wave equation for water transfer and the advection–diffusion equation for solute transport in order to simulate the experimental data. The simulations are quite good with a Nash–Sutcliffe efficiency NSE > 0.98 for water transfer and 0.84 < NSE < 0.97 for solute transport. This platform could serve hydrological modellers because it offers a variety of measured parameters (flow, water height, and solute concentration), at a fine time step under unsteady flow conditions.  相似文献   
62.
63.
Detailed hydrogeochemical and isotopic data of groundwaters from the Hammamet–Nabeul unconfined aquifer are used to provide a better understanding of the natural and anthropogenic processes that control the groundwater mineralization as well as the sources of different groundwater bodies. It has been demonstrated that groundwaters, which show Na–Cl and Ca–SO4–Cl water facies, are mainly influenced by the dissolution of evaporates, the dedolomitization and the cation-exchange process; and supplementary by anthropogenic process in relation with return flow of irrigation waters. The isotopic signatures permit to classify the studied groundwaters into two different groups. Non-evaporated groundwaters that are characterized by depleted δ 18O and δ 2H contents highlighting the importance of modern recharge at higher altitude. Evaporated groundwaters with enriched contents reflecting the significance infiltration of return flow irrigation waters. Tritium data in the studied groundwaters lend support to the existence of pre-1950 and post-1960 recharge. Carbon-14 activities in shallow wells that provide evidence to the large contamination by organic 14C corroborate the recent origin of the groundwaters in the study area.  相似文献   
64.
The natural river water certified reference material SLRS-4 (NRC-CNRC, National Research Council-Conseil National de Recherches Canada) has been routinely analysed for major and trace elements by six French laboratories. Most measurements were made using inductively coupled plasma-mass spectrometry. For silicon and thirty one trace elements (rare earth elements, Ag, B, Br, Cs, Ga, Ge, Li, P, Pd, Rb, Se, Th, Ti, Tl, W, Y and Zr), no certified values are assigned by NRC-CNRC. We propose some compilation values and related uncertainties according to the results obtained by the different laboratories.  相似文献   
65.
A summary is provided of the first of a series of proposed Integrated Science Initiative workshops supported by the UNESCO International Hydrological Programme. The workshop brought together hydrologists, environmental chemists, microbiologists, stable isotope specialists and natural resource managers with the purpose of communicating new ideas on ways to assess microbial degradation processes and reactive transport at catchment scales. The focus was on diffuse contamination at catchment scales and the application of compound‐specific isotope analysis (CSIA) in the assessment of biological degradation processes of agrochemicals. Major outcomes were identifying the linkage between water residence time distribution and rates of contaminant degradation, identifying the need for better information on compound specific microbial degradation isotope fractionation factors and the potential of CSIA in identifying key degradative processes. In the natural resource management context, a framework was developed where CSIA techniques were identified as practically unique in their capacity to serve as distributed integrating indicators of process across a range of scales (micro to diffuse) of relevance to the problem of diffuse pollution assessment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
66.
Efficiency of hydrological models mostly depends on the quality of the calibration performed prior to use. In this paper, an automatic calibration framework for the distributed hydrological model HYDROTEL is proposed. The calibration procedure was performed for three watersheds characterized with different hydroclimatological conditions: the Sassandra located in Ivory Coast, Africa, and the Montmorency and Beaurivage watersheds located in Quebec (Canada). Results of one‐a‐time (OAT) sensitivity analysis showed that the order of the most sensitive parameters differs for each watershed. Thus, the sensitivity depends on the hydroclimatic and physiographic characteristics of the watersheds. Co‐linearity indices showed that all model parameters were identifiable, that is, none of the studied parameters could be explained by a combination of the other parameters. Following these findings, an automatic calibration was run. Results indicated there was good agreement between simulated and measured streamflows at the outlet of each watershed; Nash–Sutcliffe efficiency (NSE) ranging between 0.77 and 0.92 and R2 ranging from 0.87 to 0.97. When comparing NSE and R2 values obtained using a process‐oriented, multiple‐objective, manual calibration strategy, a slight increase in model efficiency was reached with the automatic calibration procedure (4.15% for NSE and 2.95% for R2) improving predictions of peak flows for the Montmorency and Beaurivage watersheds (temperate climate conditions) and flows beyond the rainfall season in the Sassandra watershed. The proposed automatic calibration procedure introduced in this paper may be applied to other distributed hydrological model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
67.
The Stockholm Humic Model (SHM) and Humic Ion-Binding Models V and VI were compared for their ability to predict the role of dissolved organic matter (DOM) in the speciation of rare earth elements (REE) in natural waters. Unlike Models V and VI, SHM is part of a speciation code that also allows us to consider dissolution/precipitation, sorption/desorption and oxidation/reduction reactions. In this context, it is particularly interesting to test the performance of SHM. The REE specific equilibrium constants required by the speciation models were estimated using linear free-energy relationships (LFER) between the first hydrolysis constants and the stability constants for REE complexation with lactic and acetic acid. Three datasets were used for the purpose of comparison: (i) World Average River Water (Dissolved Organic Carbon (DOC) = 5 mg L−1), previously investigated using Model V, was reinvestigated using SHM and Model VI; (ii) two natural organic-rich waters (DOC = 18-24 mg L−1), whose REE speciation has already been determined with both Model V and ultrafiltration studies, were also reinvestigated using SHM and Model VI; finally, (iii) new ultrafiltration experiments were carried out on samples of circumneutral-pH (pH 6.2-7.1), organic-rich (DOC = 7-20 mg L−1) groundwaters from the Kervidy-Naizin and Petit-Hermitage catchments, western France. The results were then compared with speciation predictions provided by Model VI and SHM, successively. When applied to World Average River Water, both Model VI and SHM yield comparable results, confirming the earlier finding that a large fraction of the dissolved REE in rivers occurs as organic complexes This implies that the two models are equally valid for calculating REE speciation in low-DOC waters at circumneutral-pH. The two models also successfully reproduced ultrafiltration results obtained for DOC-rich acidic groundwaters and river waters. By contrast, the two models yielded different results when compared to newly obtained ultrafiltration results for DOC-rich (DOC > 7 mg L−1) groundwaters at circumneutral-pH, with Model VI predictions being closer to the ultrafiltration data than SHM. Sensitivity analysis indicates that the “active DOM parameter” (i.e., the proportion of DOC that can effectively complex with REE) is a key parameter for both Model VI and SHM. However, a survey of ultrafiltration results allows the “active DOM parameter” to be precisely determined for the newly ultrafiltered waters studied here. Thus, the observed discrepancy between SHM predictions and ultrafiltration results cannot be explained by the use of inappropriate “active DOM parameter” values in this model. Save this unexplained discrepancy, the results presented in this study demonstrate that both Model VI and SHM can provide reliable estimates of REE speciation in organic-rich waters. However, it is essential to know the proportion of DOM that can actively complex REE before running these two speciation models.  相似文献   
68.
The aim of this study was to design and test a new tool for (i) the quantitative in situ monitoring of Fe(III) reduction in soils and (ii) the tracking of the potential mineralogical changes of Fe-oxides. The tool consists of small (2 × 2 × 0.2 cm) striated polymer plates coated with synthetic pure ferrihydrite or As-doped ferrihydrite (Fh–As). These slides were then inserted within two different horizons (organo-mineral and albic) located in a wetland soil with alternating redox conditions. Dissolution was quantified by X-ray fluorescence (XRF) analyses of total metal contents before and after insertion into the soil. The crystallographic evolution of Fe-oxides was characterized by scanning electron microscope equipped with an energy-dispersive spectrometer (SEM–EDS). Over the months, the ferrihydrite progressively disappeared, at rates comparable to those previously measured in laboratory studies, i.e. in the 1–10 × 10−12 mol Fe m−2 s−1 range. SEM observations indicate that the supports were highly colonized by bacteria and biofilms in the organo-mineral horizon, suggesting a biological-mediated process, while the albic horizon appeared to be characterized by a mostly chemical-mediated process. In the albic horizon, Fe-sulphide and other micro-precipitates were formed after 7 months of incubation in balance with a quasi dissolution of initial Fe-oxides.  相似文献   
69.
The Anyui Metamorphic Complex (AMC) of Cretaceous age is composed of metachert, schist, gneiss, migmatite and ultramafic rocks, and forms a dome structure within the northernmost part of the Jurassic accretionary complex of the Samarka terrane. The two adjacent geological units are bounded by a fault, but the gradual changes of grain size and crystallinity index of quartz in chert and metachert of the Samarka terrane and the AMC, together with the gradual lithological change, indicate that at least parts of the AMC are metamorphic equivalents of the Samarka rocks. Radiolarian fossils from siliceous mudstone of the Samarka terrane indicates Tithonian age (uppermost Jurassic), and hence, form a slightly later accretion. This signifies that the accretionary complex in the study area is one of the youngest tectonostratigraphic units of the Samarka terrane. The relationship between the Samarka terrane and AMC, as well as their ages and lithologies, are similar to those of the Tamba–Mino–Ashio terrane and Ryoke Metamorphic Complex in southwest Japan. In both areas the lower (younger) part of the Jurassic accretionary complexes were intruded and metamorphosed by Late Cretaceous granitic magma. Crustal development of the Pacific‐type orogen has been achieved by the cycle of: (i) accretion of oceanic materials and turbidites derived from the continent; and (ii) granitic intrusion by the next subduction and accretion events, accompanied by formation of high T/P metamorphic complexes.  相似文献   
70.
贵州省东南部和湖南省西部接壤的大片新元古代下江群分布地区盛产的石英脉型金矿具有较大远景。该套巨厚的砂质板岩、沉凝灰质板岩常被称为复理石组合。通过对锦屏县平秋剖面、锦屏-远口地区天柱剖面以及锦屏、铜鼓等地的考察研究,认为它们均属于火山碎屑浊流沉积。本次主要研究锦屏、天柱一带浊积岩的沉积特征、岩石学特征和金的地球化学背景值,并参考了大量区域地质资料,分析了黔东南地区青白口纪的番召期、清水江期、平略期和隆里期浊流沉积的古地理特征,指出石英脉金矿的分布受背斜轴的剪切带控制,而含沉凝灰岩的浊积岩还可能是其矿源层。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号