首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
地球物理   16篇
地质学   8篇
天文学   1篇
自然地理   9篇
  2019年   1篇
  2017年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   4篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
31.
32.
The Cappadocia region, located in Central Turkey, is characterized by widespread lava flows and volcanoclastic deposits dating from Miocene to Quaternary. Gravity and aeromagnetic anomalies of the region appear to present similar high and low amplitude regions, although the aeromagnetic anomalies exhibit a rather complex pattern which is thought to be caused by remanent magnetization. The low-pass filtered aeromagnetic map shows a deep-seated magnetic anomaly which may be linked to the widespread volcanic activity at the surface. The pseudogravity transformation of the upward continued anomaly has been constructed. The pseudogravity anomaly demonstrates some form of clockwise rotation. This anomaly was modelled by means of a three-dimensional method. The top and bottom of the body are at 6.3km and 11km (including the flight height) from the ground surface, respectively. This deep body is ellipsoidal and extends along an E-W direction, which is in line with the regional stress direction deduced from GPS measurements. A new mobilistic dynamo-tectonic system appears to explain the body’s E-W elongation. The modelled body may be the source for the inferred geothermal energy of the region. Magnetic measurements were carried out on oriented rock samples collected from outcrops of ignimbrites and basalts, providing directions and intensities of remanent magnetization, susceptibilities and Koeningsberger (Q) ratios. Standard deviations of remanent directions of the Natural Remanent Magnetization (NRM) display a wide scatter implying unreliability of the surface data. Reduction to pole (RTP) transformation of magnetic anomalies was successful with the induced magnetization angle despite the complex pattern of magnetic anomalies.  相似文献   
33.
Measuring magnetic susceptibility is a method which is used to estimate the amount of magnetic particles in soils, sediments or dusts. Changes in magnetic susceptibility can be due to various reasons: input from different sources of sediments, e.g. from different soils or rocks, atmospheric fallout of anthropogenic dusts containing magnetic particles produced by fossil fuel combustion, steel production or road traffic. In the case of river sediments, input from the catchment is of primary significance. The main aim of this investigation was to test the potential of magnetic susceptibility screening in identifying the effect and significance of anthropogenic activities in an area with complex geological conditions. We investigated the magnetic susceptibility of riverbed sediments of the largest river of the Czech Republic, the Moldau river. Besides that, the magnetic signal of nearby topsoils as well as of outcropping bedrocks in the vicinity of the river was examined. In the upper 300 km of the river, the magnetic enhancement of the river sediments can be linked to anthropogenic activities. Positive correlations were found in the river sediments between the contents of Cu and Zn and magnetic susceptibility, while Fe, Mn and Ni did not show a correlation with magnetic susceptibility. However, the major geogenic magnetic anomaly in the area around the Slapy dam has made it impossible to unambiguously interpret the magnetic signal in terms of anthropogenic impact in the last 80 km downstream.  相似文献   
34.
We present the first triangulation measurements of electric fields with the electron drift instrument (EDI) on Equator-S. We show results from five high-data-rate passes of the satellite through the near-midnight equatorial region, at geocentric distances of approximately 5–6 RE, during geomagnetically quiet conditions. In a co-rotating frame of reference, the measured electric fields have magnitudes of a few tenths of mV/m, with the E × B drift generally directed sunward but with large variations. Temporal variations of the electric field on time scales of several seconds to minutes are large compared to the average magnitude. Comparisons of the “DC” baseline of the EDI-measured electric fields with the mapped Weimer ionospheric model and the Rowland and Wygant CRRES measurements yield reasonable agreement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号