首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   61篇
  国内免费   12篇
测绘学   40篇
大气科学   56篇
地球物理   213篇
地质学   287篇
海洋学   75篇
天文学   158篇
综合类   2篇
自然地理   93篇
  2022年   3篇
  2021年   22篇
  2020年   18篇
  2019年   26篇
  2018年   31篇
  2017年   29篇
  2016年   35篇
  2015年   28篇
  2014年   39篇
  2013年   71篇
  2012年   40篇
  2011年   39篇
  2010年   40篇
  2009年   44篇
  2008年   40篇
  2007年   36篇
  2006年   30篇
  2005年   29篇
  2004年   25篇
  2003年   20篇
  2002年   26篇
  2001年   16篇
  2000年   20篇
  1999年   17篇
  1998年   15篇
  1997年   15篇
  1996年   14篇
  1995年   13篇
  1994年   14篇
  1993年   6篇
  1992年   7篇
  1991年   12篇
  1990年   5篇
  1989年   10篇
  1988年   6篇
  1987年   3篇
  1986年   8篇
  1985年   13篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1977年   5篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1967年   2篇
  1966年   3篇
排序方式: 共有924条查询结果,搜索用时 218 毫秒
881.
The evolution of meandering river floodplains is predominantly controlled by the interplay between overbank sedimentation and channel migration. The resulting spatial heterogeneity in floodplain deposits leads to variability in bank erodibility, which in turn influences channel migration and planform development. Despite the potential significance of these feedbacks, few studies have quantified their impact upon channel evolution and floodplain construction in dynamic settings (e.g. locations characterized by rapid channel migration and high rates of overbank sedimentation). This study employs a combination of field observations, geographic information system (GIS) analysis of satellite imagery and numerical modelling to investigate these issues along a 375 km reach of the Rio Beni in the Bolivian Amazon. Results demonstrate that the occurrence of clay‐rich floodplain deposits promotes a significant reduction in channel migration rates and distinctive styles of channel evolution, including channel straightening and immobilization of bend apices leading to channel narrowing. Clay bodies act as stable locations limiting the propagation of planform disturbances in both upstream and downstream directions, and operate as ‘hinge’ points, around which the channel migrates. Spatial variations in the erodibility of clay‐rich floodplain material also promote large‐scale (10–50 km) differences in channel sinuosity and migration, although these variables are also likely to be influenced by channel gradient and tectonic effects that are difficult to quantify. Numerical model results suggest that spatial heterogeneity in bank erodibility, driven by variable bank composition, may force a substantial (c. 30%) reduction in average channel sinuosity, compared to situations in which bank strength is spatially homogeneous. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
882.
In compliance with the New Jersey Private Well Testing Act, 78,546 wells (93,787 samples, including samples from 13,290 wells that were analyzed more than once) were analyzed for total coliform (TC) bacteria by one or more of 39 laboratories over a 10‐year period. Samples containing TC bacteria were further analyzed for the presence of either fecal coliform or E. coli (FC/EC) bacteria. The large population of wells sampled multiple times permitted a systematic study of the effect of repeat sampling on coliform bacteria detection rates. The detection rate increased with the number of times wells were sampled. In bedrock, TC bacteria were detected in 21% of the population of wells analyzed only once, 33% in the population sampled twice, and 43% in the population sampled three times. It was estimated that TC bacteria would be detected in 90% of all wells if each well was analyzed 10 times. For FC/EC bacteria, it was estimated that 21 and 68 samples, respectively, would be required to reach the 50% and 90% population detection rates. In the Coastal Plain (CP), many more samples would be required to achieve the same estimated population detection rates. The population detection rate estimates were also dependent on the type of method used, the pH of the well water, and the geologic formation in which wells were located. A single sample was not sufficient to detect coliform bacteria when present in well water.  相似文献   
883.
High-levels of microplastic pollution in a large,remote, mountain lake   总被引:5,自引:0,他引:5  
Despite the large and growing literature on microplastics in the ocean, little information exists on microplastics in freshwater systems. This study is the first to evaluate the abundance, distribution, and composition of pelagic microplastic pollution in a large, remote, mountain lake. We quantified pelagic microplastics and shoreline anthropogenic debris in Lake Hovsgol, Mongolia. With an average microplastic density of 20,264 particles km−2, Lake Hovsgol is more heavily polluted with microplastics than the more developed Lakes Huron and Superior in the Laurentian Great Lakes. Fragments and films were the most abundant microplastic types; no plastic microbeads and few pellets were observed. Household plastics dominated the shoreline debris and were comprised largely of plastic bottles, fishing gear, and bags. Microplastic density decreased with distance from the southwestern shore, the most populated and accessible section of the park, and was distributed by the prevailing winds. These results demonstrate that without proper waste management, low-density populations can heavily pollute freshwater systems with consumer plastics.  相似文献   
884.
Shake tables provide a direct means by which to evaluate structural performance under earthquake excitation. Because the entire structure is mounted on the base plate and subjected to the ground motion in real time, dynamic effects and rate‐dependent behavior can be accurately represented. Shake table control is not straightforward as the desired signal is an acceleration record, while most actuators operate in displacement feedback for stability. At the same time, the payload is typically large relative to the capacity of the actuator, leading to pronounced control‐structure interaction. Through this interaction, the dynamics of the specimen influence the dynamics of the shake table, which can be problematic when specimens change behavior because of damage or other nonlinearities. Moreover, shake tables are themselves inherently nonlinear, making it difficult to accurately recreate a desired acceleration record over a broad range of amplitudes and frequencies. A model‐based multi‐metric shake table control strategy is proposed to improve tracking of the desired acceleration of a uniaxial shake table, remaining robust to nonlinearities including changes in specimen condition. The proposed strategy is verified for the shake table testing of both linear and nonlinear structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
885.
Despite increasing recognition of the potential of aquatic biota to act as ‘geomorphic agents’, key knowledge gaps exist in relation to biotic drivers of fine sediment dynamics at microscales and particularly the role of invasive species. This study explores the impacts of invasive signal crayfish on suspended sediment dynamics at the patch scale through laboratory and field study. Three hypotheses are presented and tested: (1) that signal crayfish generate pulses of fine sediment mobilisation through burrowing and movement that are detectable in the flow field; (2) that such pulses may be more frequent during nocturnal periods when signal crayfish are known to be most active; and (3) that cumulatively the pulses would be sufficient to drive an overall increase in turbidity. Laboratory mesocosm experiments were used to explore crayfish impacts on suspended sediment concentrations for two treatments: clay banks and clay bed substrate. For the field study, high frequency near‐bed and mid‐flow turbidity time series from a lowland river with known high densities of signal crayfish were examined. Laboratory data demonstrate the direct influence of signal crayfish on mobilisation of pulses of fine sediment through burrowing into banks and fine bed material, with evidence of enhanced activity levels around the mid‐point of the nocturnal period. Similar patterns of pulsed fine sediment mobilisation identified under field conditions follow a clear nocturnal trend and appear capable of driving an increase in ambient turbidity levels. The findings indicate that signal crayfish have the potential to influence suspended sediment yields, with implications for morphological change, physical habitat quality and the transfer of nutrients and contaminants. This is particularly important given the spread of signal crayfish across Europe and their presence in extremely high densities in many catchments. Further process‐based studies are required to develop a full understanding of impacts across a range of river styles. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
886.
This paper proposes a single‐sided vibro‐impact track nonlinear energy sink (SSVI track NES) as an effective way to mitigate the effects of impulsive and seismic excitation on building structures. The SSVI track NES is a passive energy dissipation device, which consists of a mass moving along a track, the shape of which provides a nonlinear restoring force to the mass. Previous studies have analyzed the track NES, which considers the track shape to be smooth and symmetric. By introducing a discontinuity into the shape of the track (e.g., through impact), energy in the primary structure can be scattered to higher frequency responses where it can be dissipated at a faster rate. First, the SSVI track NES is analytically investigated and numerically optimized base on a two degree‐of‐freedom primary structure. The results of numerical simulations show that the SSVI track NES can be more efficient than both the track NES and tuned mass damper in reducing the response of the primary structure. Based on the analytical studies, the SSVI track NES is experimentally realized and investigated when subjected to both impulse‐like and seismic excitations, confirming the numerical predictions and validating the analytical model of the device. Finally, the robustness of the SSVI track NES is investigated numerically. The results of this investigation indicate that the SSVI track NES remains effective over a broad range of input excitation energy levels, as well as during significant changes in the stiffness of the primary structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
887.
SMART-1 is the first of the Small Missions for Advanced Research in Technology of the ESA Horizons 2000 scientific programme. The SMART-1 mission is dedicated to testing of new technologies for future cornerstone missions, using Solar-Electric Primary Propulsion (SEPP) in Deep Space. The chosen mission planetary target is the Moon. The target orbit will be polar with the pericentre close to the South-Pole. The pericentre altitude lies between 300 and 2000 km, while the apocentre will extend to about 10,000 km. During the cruise phase, before reaching the Moon, the spacecraft thrusting profile allows extended periods for cruise science. The SMART-1 spacecraft will be launched in the spring of 2003 as an auxiliary passenger on an Ariane 5 and placed into a Geostationary Transfer Orbit (GTO). The expected launch mass is about 370 kg, including 19 kg of payload. The selected type of SEPP is a Hall-effect thruster called PPS-1350. The thruster is used to spiral out of the GTO and for all orbit maneuvers including lunar capture and descent. The trajectory has been optimised by inserting coast arcs and the presence of the Moon's gravitational field is exploited in multiple weak gravity assists.The Development Phase started in October 1999 and is expected to be concluded by a Flight Acceptance Review in January 2003. The short development time for this high technology spacecraft requires a concerted effort by industry, science institutes and ESA centres. This paper describes the mission and the project development status both from a technical and programmatic standpoint.  相似文献   
888.
John Playfair recommended the resultant vector method of averaging directions as early as 1802.  相似文献   
889.
890.
Abstract Remote sensing studies are the primary means of solar system exploration. In particular, spectral reflectance measurements involve determinations of the nature and compositions of other worlds through analysis of absorption features characteristic of the surface chemistry and mineralogy. These studies are particularly applicable to “airless” solar system bodies (e.g., the Moon), because atmospheres, such as on Earth, tend to interfere with the reflectance spectrum. The precision of the spectral measurements is greatly increased by calibration with actual lunar soils. In the past, these calibrations were done using particle-counting data collected for the study of soil formation processes, soil classification, and provenance determination. These particle counting data, while valuable in those areas of study, neither identify the true volume percentages of soil particles, nor give the true modal values for the various phases (i.e., minerals and glasses) which make up the soil grains. These data are paramount for accurate spectral reflectance calibrations. Therefore, in this paper, a new technique is presented that involves x-ray digital-imaging of lunar soils using an energy dispersive spectrometer (EDS) on an electron microprobe. In contrast to particle counting with an optical microscope, the digital-imaging method allows precise volume percentages of soil grains to be determined, including absolute modal abundances of the various phases locked within the particles as well as their chemistry. In order to validate this method for characterization of lunar soils, the technique was applied to four Apollo 17 soils that were previously described by Heiken and McKay (1974) via particle counts with an optical microscope, and similar results were obtained. In addition to verifying the x-ray digital-imaging technique, the obtained data were applied in order to better understand the lunar-soil formational process, specifically the variation of particle types with maturity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号