首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
地球物理   8篇
地质学   15篇
天文学   10篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2014年   3篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2001年   1篇
  1997年   1篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1979年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
11.
A method is proposed for determining the temperature of the Earth’s upper mantle from geochemical and seismic data. The data are made consistent by physicochemical simulations, which enable one to derive physical characteristics from geochemical compositional models (direct problem) and to convert seismic velocity profiles into model for the temperature distribution (inverse problem). The methods were used to simulate temperature distribution profiles in the “normal” and “cold” mantle on the basis of profiles for the velocities of P and S waves in the IASP91 model and regional models for the Kaapvaal craton. The constraints assumed for the chemical composition included the depleted material of garnet peridotites and the fertile primitive mantle. The conversion of seismic into thermal profiles was conducted by minimizing the Gibbs free energy with the use of equations of state for the mantle material with regard for anharmonicity and the effects of inelasticity. The sensitivity of the model to the chemical composition and its importance in application to the solution of inverse problems is demonstrated. Temperature profiles derived from the IASP91 and some regional models for depths of 200–210 km display an inflection on geotherms toward decreasing temperatures, which is physically senseless. This anomaly cannot be related to either the presence of volatiles or the occurrence of partial melting, because both of them should have resulted in a decrease, but not an increase, in the seismic velocities. Temperature inversion can be ruled out by the gradual fertilization of the mantle with depth. In this situation, the upper mantle material at depths of 200–300 km should be enriched in FeO, Al2O3, and CaO relative to garnet peridotites and be simultaneously depleted in these oxides relative to the pyrolite material of the primitive mantle. It can be generally concluded that both the lithosphere and sublithospheric mantle of the Kaapvaal craton, as well as the normal mantle, should be chemically stratified.  相似文献   
12.
13.
Roles of the Information Bulletin on Variable Stars (IBVS) in servicing some of the information needs of observers of variable stars are briefly summarized.  相似文献   
14.
15.
16.
The paper presents an analysis of experimental results on phase equilibria in the system ice VI-ice VII-water. The mathematical processing of the experimental data makes it possible to further constrain the location of phase transition boundaries between crystalline ices VI and VII and liquid water. Based on the standard thermodynamic properties of H2O, an equation was derived for the free energy of formation of liquid water in its stability fields. The equations thus obtained were then utilized to calculate the standard thermodynamic properties (free energy, enthalpy, and entropy) of water ice VI and VII and the free energy of their formation at pressures of 6.3–25 kbar.  相似文献   
17.
The thermal structure of continental lithosphere (the temperature, heat flows, and heat generation in the crust and lithosphere) is reconstructed from geothermal, seismic, and petrologic data. The first step is the determination of the temperature profile from absolute P and S wave velocities (T P, S ). The T P, S profile is then adjusted to a thermophysical model of conductive transfer. In addition, the surface heat flow and the T P, S profile are used to determine heat generation, thicknesses of crustal layers, and heat flow components in the crust and lithosphere. A feature inherent in the solution of the thermophysical inverse problem obtained in this paper is the use of constraints derived from the temperature reconstruction by seismic data inversion. As a result, the analytical dependence of the temperature on depth, the intensity of radiogenic heat sources in the crust, and heat flow components in the crust and lithosphere are determined.  相似文献   
18.
Models of the internal structure of Callisto were constructed and the extent of its differentiation was determined based on geophysical information from the Galileo spacecraft (the mass, the radius, the mean density, and the moment of inertia), geochemical data (the chemical composition of meteorites), and the equations of state of water, ices, and meteoritic material. The thickness and the phase state of the water-ice shell were defined as well as the ice concentrations in the rock-ice mantle and the bulk concentration of H2O. The constraints on the density distribution in the mantle and the size of the rock-iron core were derived. We considered models of the internal structure of Callisto in which the presence of a continuous ice shell was assumed (models without ocean) and models with an internal ocean. We demonstrated that it is possible to apply three-layer models with an icy shell up to 320 km in thickness and a rock-iron core in different combinations with a rock-ice mantle. These models do not reject a two-layer structure of Callisto (an ice lithosphere plus a rock-ice mantle or a rock-ice mantle plus a rock-iron core) and a one-layer model of the satellite composed only of a rock-ice mantle with an ice concentration that is variable in depth. Taking into account the chemically bound water, the bulk content of H2O in the satellite is found to be 49–55 wt %. For the model with an internal ocean, the geophysically allowed thickness of the water-ice shell of Callisto was estimated to be 270–315 km with thicknesses of the icy crust and the underlying water layer of 135–150 and 120–180 km, respectively. The results of reconstruction of the composition and structure of the regular satellites of Jupiter allow us to conclude that they were possibly formed from material whose composition was close to ordinary L/LL chondrites at relatively low temperatures, lower than the temperature of evaporation of iron and Fe-Mg silicates.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 321–341.Original Russian Text Copyright © 2005 by Kuskov, Kronrod.  相似文献   
19.
A molecular dynamics (MD) simulation is performed for the physical and chemical properties of solid and liquid Fe–S solutions using the embedded atom model (EAM) potential as applied to the internal structure of the Moon, Io, Europa, and Ganymede under the assumption that the satellites' cores can be described by a two-component iron–sulfur system. Calculated results are presented for the thermodynamic parameters including the caloric, thermal, and elastic properties (specific heat, thermal expansion, Grüneisen parameter, density, compression module, velocity of sound, and adiabatic gradient) of the Fe–S solutions at sulfur concentrations of 0–18 at %, temperatures of up to 2500 K, and pressures of up to 14 GPa. The velocity of sound, which increases as pressure rises, is weakly dependent on sulfur concentration and temperature. For the Moon’s outer Fe–S core (~5 GPa/2000 K), which contains 6–16 at % (3.5–10 wt %) sulfur, the density and the velocity of sound are estimated at 6.3–7.0 g/cm3 and 4000 ± 50 m/s, respectively. The MD calculations are compared with the interpretation of the Apollo observations (Weber et al., 2011) to show a good consistency of the velocity of P-waves in the Moon’s liquid core whereas the thermodynamic density of the Fe–S core is not consistent with the seismic models with ρ = 5.1–5.2 g/cm3 (Garcia et al., 2011; Weber et al., 2011). The revision the density values for the core leads to the revision of its size and mass. At sulfur concentrations of 3.5–10 wt %, the density of the Fe–S melt is 20–30% higher that the seismic density of the core. Therefore, the most likely radius of the Moon’s outer core must be less than 330 km (Weber et al., 2011) because, provided that the constraint on the Moon’s mass and moment of inertia is satisfied, an increase in the density of the core must lead to a reduction of its radius. For Jupiter’s Galilean moons Io, Europa, and Ganymede, constraints are obtained on the size, density, and sound velocity of the Fe–S liquid cores. The geophysical and geochemical characteristics of the internal structure of the Moon and Jupiter’s moons are compared. The calculations of the adiabatic gradient at the PT conditions for the Fe–S cores of the Moon, Io, Europa, and Ganymede suggest the top-down crystallization of the core (Fe-snow scenario).  相似文献   
20.
This paper attempts to extend the physical arguments underlying the distributed TOPMODEL concepts in an application to the strongly seasonal contributing area responses in two adjacent small mediterranean catchments in the Prades region of Catalonia, Spain. A perceptual model of hydrological response in these catchments is used to suggest possible modifications of the model in a hypothesis testing framework, including an attempt to modify the topographic index approach to reflect the expansion of the effective area of subsurface flow during the wetting-up sequence. It is found that slight improvements in modelling efficiency are possible but that different model parameter distributions are appropriate for different parts of the record. The model was much more successful for the catchment producing the higher runoff volumes. © 1997 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号