首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
测绘学   12篇
地球物理   13篇
地质学   1篇
  2022年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
排序方式: 共有26条查询结果,搜索用时 156 毫秒
11.
First GOCE gravity field models derived by three different approaches   总被引:28,自引:10,他引:18  
Three gravity field models, parameterized in terms of spherical harmonic coefficients, have been computed from 71 days of GOCE (Gravity field and steady-state Ocean Circulation Explorer) orbit and gradiometer data by applying independent gravity field processing methods. These gravity models are one major output of the European Space Agency (ESA) project GOCE High-level Processing Facility (HPF). The processing philosophies and architectures of these three complementary methods are presented and discussed, emphasizing the specific features of the three approaches. The resulting GOCE gravity field models, representing the first models containing the novel measurement type of gravity gradiometry ever computed, are analysed and assessed in detail. Together with the coefficient estimates, full variance-covariance matrices provide error information about the coefficient solutions. A comparison with state-of-the-art GRACE and combined gravity field models reveals the additional contribution of GOCE based on only 71 days of data. Compared with combined gravity field models, large deviations appear in regions where the terrestrial gravity data are known to be of low accuracy. The GOCE performance, assessed against the GRACE-only model ITG-Grace2010s, becomes superior at degree 150, and beyond. GOCE provides significant additional information of the global Earth gravity field, with an accuracy of the 2-month GOCE gravity field models of 10?cm in terms of geoid heights, and 3?mGal in terms of gravity anomalies, globally at a resolution of 100?km (degree/order 200).  相似文献   
12.
The determination of the local gravity field by means of the point mass inversion method can be performed as an alternative to conventional numerical methods, such as the least-squares collocation. Based on the first derivative of the inverse-distance Newtonian potential for the representation of the gravity anomaly data, it is possible to compute any wavelength component of the geoid in planar approximation with sufficient accuracy. In order to exemplify the theoretical concept, two applications are presented of the computation of two different wavelength components of the geoid, the long wavelength component in a local solution and the short wavelength component in a regional solution. The results are compared with corresponding least-squares collocation solutions, using a global geopotential model to remove and to restore the long wavelength component.  相似文献   
13.
In many modern local and regional gravity field modelling concepts, the short-wavelength gravitational signal modeled by the residual terrain modelling (RTM) technique is used to augment global geopotential models, or to smooth observed gravity prior to data gridding. In practice, the evaluation of RTM effects mostly relies on a constant density assumption, because of the difficulty and complexity of obtaining information on the actual distribution of density of topographic masses. Where the actual density of topographic masses deviates from the adopted value, errors are present in the RTM mass-model, and hence, in the forward-modelled residual gravity field. In this paper we attempt to overcome this problem by combining the RTM technique with a high-resolution mass-density model. We compute RTM gravity quantities over New Zealand, with different combinations of elevation models and mass-density assumptions using gravity and GPS/levelling measurements, precise terrain and bathymetry models, a high-resolution mass-density model and constant density assumptions as main input databases. Based on gravity observations and the RTM technique, optimum densities are detected for North Island of ~2500 kg m?3, South Island of ~2600 kg m?3, and the whole New Zealand of ~2590 kg m?3. Comparison among the three sets of residual gravity disturbances computed from different mass-density assumptions show that, together with a global potential model, the high-resolution New Zealand density model explains ~89.5% of gravitational signals, a constant density assumption of 2670 kg m?3 explains ~90.2%, while a regionally optimum mass-density explains ~90.3%. Detailed comparison shows that the New Zealand density model works best over areas with small residual heights. Over areas with larger residual heights, subsurface density variations appear to affect the residual gravity disturbance. This effect is found to reach about 30 mGal over Southern Alpine Fault. In order to improve the RTM modelling with mass-density maps, a higher-quality mass-density model that provides radially varying mass-density data would be desirable.  相似文献   
14.
The most crucial part of the GOCE gradiometer processing is, besides the internal calibration of the gradiometer, the determination of the satellite’s inertial angular rate. This paper describes a new method for the angular rate determination. It is based on the stochastic properties of the GOCE star sensors and the gradiometer. The attitude information of both instrument types is combined at the level of angular rates. The combination is done in the spectral domain by Wiener filtering, and thus using an optimal relative weighting of the star sensor and gradiometer attitude information. Since the complete processing chain from raw measurements to gravity field solutions is performed, the results are not only analyzed at the level of gravity gradients, but also of gravity field solutions. Compared to the nominal method, already the resulting gravity gradients show a significantly improved performance for the frequencies (mainly) below the gradiometer measurement bandwidth. This can be verified by analysis of the gravity gradient trace. The improvement is propagated to the level of gravity field models, where a better accuracy can be observed for selected groups of coefficients at characteristic bands at orders k × 16, with integer k, up to high harmonic degrees.  相似文献   
15.
The temporal changes of the Earth’s gravity field can be observed on a global scale with low–low satellite-to-satellite tracking (SST) missions. One of the largest restrictions of the quality of low–low SST gravity fields is temporal aliasing. This study investigates the design of optimal satellite orbits for temporal gravity retrieval regarding temporal aliasing. We present a method with which optimal altitudes for the orbit of a gravity satellite mission with the goal of temporal gravity retrieval can be identified. The two basic orbit frequencies, the rates of the argument of the latitude and the ascending node, determine the mapping of the signal measured along the orbit onto the spherical harmonic (SH) spectrum. The main spectral characteristics of temporal aliasing are maxima at specific SH orders. The magnitude of the effects depends on the basic frequencies. This is analyzed with numerical low–low SST closed-loop simulations including both tidal and non-tidal background models and GRACE-like observation noise. Analyses of actual monthly GRACE solutions show that these characteristics do not depend on the low–low SST processing method. Optimal orbits are found in specific altitude bands. The best altitude bands regarding temporal aliasing for polar low Earth orbiters (LEOs) are around 301, 365, 421 and 487 km. In these bands, major aliasing effects do not occur for SH degrees and orders below 70. This study gives unique and in-depth insights into the mechanism of temporal aliasing. As it provides an important orbit design approach, it is independent of any (post-) processing method to reduce temporal aliasing.  相似文献   
16.
The reprocessing of Gravity field and steady-state Ocean Circulation Explorer (GOCE) Level 1b gradiometer and star tracker data applying upgraded processing methods leads to improved gravity gradient and attitude products. The impact of these enhanced products on GOCE-only and combined GOCE+GRACE (Gravity Recovery and Climate Experiment) gravity field models is analyzed in detail, based on a two-months data period of Nov. and Dec. 2009, and applying a rigorous gravity field solution of full normal equations. Gravity field models that are based only on GOCE gradiometer data benefit most, especially in the low to medium degree range of the harmonic spectrum, but also for specific groups of harmonic coefficients around order 16 and its integer multiples, related to the satellite’s revolution frequency. However, due to the fact that also (near-)sectorial coefficients are significantly improved up to high degrees (which is caused mainly by an enhanced second derivative in Y direction of the gravitational potential — VYY), also combined gravity field models, including either GOCE orbit information or GRACE data, show improvements of more than 10% compared to the use of original gravity gradient data. Finally, the resulting gradiometry-only, GOCE-only and GOCE+GRACE global gravity field models have been externally validated by independent GPS/levelling observations in selected regions. In conclusion, it can be expected that several applications will benefit from the better quality of data and resulting GOCE and combined gravity field models.  相似文献   
17.
GOCE Data Processing: The Spherical Cap Regularization Approach   总被引:3,自引:0,他引:3  
Due to the sun-synchronous orbit of the satellite gravity gradiometry mission GOCE, the measurements will not be globally available. As a consequence, using a set of base functions with global support such as spherical harmonics, the matrix of normal equations tends to be ill-conditioned, leading to weakly determined low-order spherical harmonic coefficients. The corresponding geopotential strongly oscillates at the poles. Considering the special configuration of the GOCE mission, in order to stabilize the normal equations matrix, the Spherical Cap Regularization Approach (SCRA) has been developed. In this approach the geopotential function at the poles is predescribed by an analytical continuous function, which is defined solely in the spatially restricted polar regions. This function could either be based on an existing gravity field model or, alternatively, a low-degree gravity field solution which is adjusted from GOCE observations. Consequently the inversion process is stabilized. The feasibility of the SCRA is evaluated based on a numerical closed-loop simulation, using a realistic GOCE mission scenario. Compared with standard methods such as Kaula and Tikhonov regularization, the SCRA shows a considerably improved performance.  相似文献   
18.
In this paper, we report on the direct positioning of small multi-directional radar reflectors, so-called octahedrons, with the synthetic aperture radar (SAR) satellite TerraSAR-X. Its highest resolution imaging mode termed staring spotlight enables the use of such octahedron reflectors with a dimension of only half a meter, but still providing backscatter equivalent to 1–2 cm observation error. Four octahedrons were deployed at Wettzell geodetic observatory, and observed by TerraSAR-X with 12 acquisitions in three different geometries. By applying our least squares stereo SAR algorithm already tested with common trihedral corner reflectors (CRs), and introducing a novel differential extension using one octahedron as reference point, the coordinates of the remaining octahedrons were directly retrieved in the International Terrestrial Reference Frame (ITRF). Contrary to our standard processing, the differential approach does not require external corrections for the atmospheric path delays and the geodynamic displacements, rendering it particularly useful for joint geodetic networks employing SAR and GNSS. In this paper, we present and discuss both methods based on results when applying them to the aforementioned Wettzell data set of the octahedrons. The comparison with the independently determined reference coordinates confirms the positioning accuracy with 2–5 cm for the standard approach, and 2–3 cm for the differential processing. Moreover, we present statistical uncertainty estimates of the observations and the positioning solutions, which are additionally provided by our parameter estimation algorithms. The results also include our 1.5 m CR available at Wettzell, and the outcomes clearly demonstrate the advantage of the multi-directional octahedrons over conventional CRs for global positioning applications with SAR.  相似文献   
19.
20.
Due to the successful operation of dedicated satellite gravity missions, nowadays high-accuracy global gravity field models have become available. This triggers the challenge to optimally combine this long to medium wavelength gravity field information derived from space-borne data with high-resolution terrestrial gravity data. In this paper, the least squares collocation concept is revised with the attempt to consistently unify the combination procedure in such a way that the full information contained in both data sets is merged. For example, in local or regional geoid determination the remove-restore method is usually applied only partially taking into account the accuracy of the global model coefficients used for the long-wavelength reduction. The key advantage of the extended formulation is the fact that it automatically accounts for the error covariance of all data types involved. The applicability, feasibility and performance of the proposed method is investigated in the frame of numerical closed-loop simulations. The two main fields of application, i.e., the improvement of a global gravity field model by terrestrial gravity field data, and, vice versa, the support to a regional geoid solution by the incorporation of a global gravity field model, have been analyzed and assessed. Although applied under simplified conditions, it could be shown that the method works and is practically applicable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号