首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   426篇
  免费   20篇
  国内免费   1篇
测绘学   5篇
大气科学   29篇
地球物理   127篇
地质学   106篇
海洋学   23篇
天文学   103篇
自然地理   54篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   13篇
  2017年   14篇
  2016年   12篇
  2015年   15篇
  2014年   6篇
  2013年   40篇
  2012年   18篇
  2011年   9篇
  2010年   12篇
  2009年   18篇
  2008年   14篇
  2007年   18篇
  2006年   16篇
  2005年   19篇
  2004年   9篇
  2003年   9篇
  2002年   4篇
  2001年   12篇
  2000年   9篇
  1999年   7篇
  1998年   11篇
  1997年   14篇
  1996年   7篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   5篇
  1990年   5篇
  1988年   4篇
  1987年   11篇
  1986年   3篇
  1985年   4篇
  1983年   3篇
  1982年   13篇
  1981年   3篇
  1980年   4篇
  1979年   7篇
  1978年   2篇
  1977年   7篇
  1976年   5篇
  1975年   4篇
  1974年   9篇
  1973年   8篇
  1971年   2篇
  1970年   2篇
  1875年   2篇
排序方式: 共有447条查询结果,搜索用时 448 毫秒
91.
Three major rhyolite systems in the northeastern Davis and adjacent Barrilla Mountains include lava units that bracketed a large pantelleritic ignimbrite (Gomez Tuff) in rapid eruptions spanning 300,000 years. Extensive silicic lavas formed the shields of the Star Mountain Formation (37.2 Ma-K/Ar; 36.84 Ma 39Ar/40Ar), and the Adobe Canyon Formation (37.1 Ma-K/Ar; 36.51-39Ar/40Ar). The Gomez Tuff (36.6 Ma-K/Ar; 36.74-39Ar/40Ar) blanketed a large region around the 18×24 km diameter Buckhorn caldera, within which it ponded, forming sections up to 500 m thick. Gomez eruption was preceded by pantelleritic rhyolite domes (36.87, 36.91 Ma-39Ar/40Ar), some of which blocked movement of Star Mountain lava flows. Following collapse, the Buckhorn caldera was filled by trachyte lava. Adobe Canyon rhyolite lavas then covered much of the region. Star Mountain Formation (~220 km3) is composed of multiple flows ranging from quartz trachyte to mildly peralkalic rhyolite; three major types form a total of at least six major flows in the northeastern Davis Mountains. Adobe Canyon Formation (~125 km3) contains fewer flows, some up to 180 m thick, of chemically homogenous, mildly peralkalic comendite, extending up to 40 km. Gomez Tuff (~220 km3) may represent the largest known pantellerite. It is typically less than 100 m thick in extra-caldera sections, where it shows a pyroclastic base and top, although interiors are commonly rheomorphic, containing flow banding and ramp structures. Most sections contain one cooling unit; two sections contain a smaller, upper cooling unit. Chemically, the tuff is fairly homogeneous, but is more evolved than early pantelleritic domes. Overall, although Davis Mountains silicic units were generated through open system processes, the pantellerites appear to have evolved by processes dominated by extensive fractional crystallization from parental trachytes similar to that erupted in pre- and post-caldera lavas. Comparison with the Pantelleria volcano suggests that the most likely parental magma for the Buckhorn series is transitional basalt, similar to that erupted in minor, younger Basin and Range volcanism after about 24 Ma. Roughly contemporaneous mafic lavas associated with the Buckhorn caldera appear to have assimilated or mixed with crustal melts, and, generally, may not be regarded as mafic precursors of the Buckhorn silicic rocks, They thus form a false Daly Gap as opposed to the true basalt/trachyte Daly gap of Pantelleria. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This paper constitutes part of a special issue dedicated to Bill Bonnichsen on the petrogenesis and volcanology of anorogenic rhyolites.  相似文献   
92.
93.
Gary D. Parker 《Solar physics》1986,104(2):333-345
The rotation of the solar electron corona is determined for intervals when nearly periodic variations dominated the polarization brightness record during 1964–1976. Coronal rotation rates derived for 765 intervals vary with height, latitude, and interval length. These rotation rates show a decrease of differential rotation with height and support earlier rotation studies which included much less stationary data. Analyses of the selected intervals and autocorrelation of the complete K-coronameter data set give quantitative estimates of the rotational effects of magnetic tracer age and lifetime. The principal effects detected are a relatively fast rotation of very long-lived tracers at high latitude and a relatively fast rotation of very short-lived tracers at low latitudes. The observations indicate that high-to-low latitude magnetic connections extending through the corona speed up rotation at high latitudes and retard it at low latitudes.  相似文献   
94.
This paper describes a study in southern Wisconsin where vertical hydraulic head profiles measured in exceptional detail provided the key data for defining hydrogeologic units (HGUs) in a layered sequence of sandstone, siltstone, shale, and dolostone. The most important data were obtained from corehole MP-6 which was cored 131 m into bedrock and instrumented using a Westbay® multilevel system with 36 depth discrete monitoring intervals. The resulting head profile is consistant over time and shows eight distinct inflections in hydraulic head. Several of the inflections occur between adjacent permeable units and are likely due to poor vertical connectivity of fracture sets rather than distinct lower permeability layers or aquitards in the conventional sense. No other type of data was capable of identifying the position of such distinct hydrogeologic features. These zones of abrupt head loss provide the primary dataset for delineation of eleven HGUs at MP-6 and are supported by less detailed head profiles at other locations. Although the detailed head profiles are essential, core logs and geophysical logs from other boreholes are nessessary to fully establish the lateral continuity of the HGUs.  相似文献   
95.
96.
Editorial     
  相似文献   
97.
Variation in seedling/sapling densities and stand diameter forms for six coniferous tree species is related to stand structural development and to elevation and topography in Lassen Volcanic National Park, California. Understory density patterns reflect differences in species tolerance; densities decrease with stand development for shade intolerant pines, but increase for shade tolerant firs and mountain hemlock. Pine species exhibit reverse-J diamter structures on recently disturbed sites, and decreaser and random forms elsewhere. More tolerant fir species show topographically mediated patterns of diameter structure, with reverse-J form common on northerly exposures and upland sites, but with decreaser and random forms on more xeric slopes. Interaction among species tolerance, environmental setting, and disturbance history yields a complex mosaic of stand diameter structures in the Lassen landscape.  相似文献   
98.
An expression is derived for the probability distribution of excursion lengths above a fixed level, for the specific case of a discrete random process sampled from an underlying, continuous normal process with exponential autocovariance function. The expression can be integrated numerically for small excursion lengths, and used with time-series simulations to qualitatively reveal the form of the distribution. Such computations indicate that excursions lengths are well approximated by a Weibull distribution to at least the 0.95 probability value. The fit improves with increasing fixed level, and with decreasing time constant of the process. In addition, an expression is given for the expected number of crossings of a fixed level, analogous to well known formulae used in estimating expected values for the cases of a continuous process and a discrete stepped process.  相似文献   
99.
The profile of a river that conveys sediment without net deposition and net erosion is referred to as ‘graded’ with respect to vertical aggradation of the river segment. Three experimental series, designed in terms of the autostratigraphic view of alluvial grade, were conducted to clarify the diagnostic spatial behaviour of graded alluvial–deltaic rivers: an ‘R series’, which utilized a moving boundary setting with a stationary base level; an ‘F series’ in a fixed boundary setting with a stationary base level to produce ‘forced grade’; and an ‘M series’ in a moving boundary setting with constant base‐level fall to produce ‘autogenic grade.’ The results of the three experimental series, combined with geometrical modelling of the effects of basin water depth and other experimental data, suggest the following: (i) in a graded alluvial–deltaic system, lateral shifting and avulsing of active distributary channels are suppressed regardless of whether the downstream boundary of the deltaic system is fixed; (ii) in a delta with a downstream‐fixed boundary, the graded streams are stabilized within a valley that is incised in the axial part of the delta plain, whereby the alluvial plain outside the valley is abandoned and terraced; (iii) in moving boundary settings, the graded river simply extends basinward as a linearly elongated channel and lobe system without cutting a valley; and (iv) a modern forced‐graded alluvial river is most likely to be found in a valley incised into a fan delta in front of very deep water, and the stratigraphic signal of fossil autogenic‐graded rivers will be found in deltaic successions that accumulated in the outer to marginal areas of deltaic continental shelves during sea‐level falls. This renewed autostratigraphic view of alluvial grade suggests a thorough reconsideration of the conventional understanding that an alluvial river feeding a progradational delta is graded with a stationary base level.  相似文献   
100.
Predicting the fate of the injected CO2 is crucial for the safety of carbon storage operations in deep saline aquifers: especially the evolution of the position, the spreading and the quantity of the mobile CO2 plume during and after the injection has to be understood to prevent any loss of containment. Fluid flow modelling is challenging not only given the uncertainties on subsurface formation intrinsic properties (parameter uncertainty) but also on the modelling choices/assumptions for representing and numerically implementing the processes occurring when CO2 displaces the native brine (model uncertainty). Sensitivity analysis is needed to identify the group of factors which contributes the most to the uncertainties in the predictions. In this paper, we present an approach for assessing the importance of model and parameter uncertainties regarding post-injection trapping of mobile CO2. This approach includes the representation of input parameters, the choice of relevant simulation outputs, the assessment of the mobile plume evolution with a flow simulator and the importance ranking for input parameters. A variance-based sensitivity analysis is proposed, associated with the ACOSSO-like meta-modelling technique to tackle the issues linked with the computational burden posed by the use of long-running simulations and with the different types of uncertainties to be accounted for (model and parameter). The approach is tested on a potential site for CO2 storage in the Paris basin (France) representative of a project in preliminary stage of development. The approach provides physically sound outcomes despite the challenging context of the case study. In addition, these outcomes appear very helpful for prioritizing the future characterisation efforts and monitoring requirements, and for simplifying the modelling exercise.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号