首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1664篇
  免费   111篇
  国内免费   17篇
测绘学   36篇
大气科学   115篇
地球物理   492篇
地质学   559篇
海洋学   147篇
天文学   263篇
综合类   12篇
自然地理   168篇
  2023年   9篇
  2022年   6篇
  2021年   32篇
  2020年   33篇
  2019年   38篇
  2018年   55篇
  2017年   54篇
  2016年   66篇
  2015年   53篇
  2014年   71篇
  2013年   117篇
  2012年   65篇
  2011年   106篇
  2010年   81篇
  2009年   115篇
  2008年   87篇
  2007年   75篇
  2006年   71篇
  2005年   66篇
  2004年   60篇
  2003年   54篇
  2002年   61篇
  2001年   24篇
  2000年   25篇
  1999年   29篇
  1998年   26篇
  1997年   20篇
  1996年   29篇
  1995年   22篇
  1994年   19篇
  1993年   9篇
  1992年   21篇
  1991年   5篇
  1990年   9篇
  1989年   10篇
  1988年   12篇
  1987年   11篇
  1986年   9篇
  1985年   12篇
  1984年   18篇
  1983年   14篇
  1982年   17篇
  1981年   10篇
  1980年   13篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   8篇
  1975年   5篇
  1973年   6篇
排序方式: 共有1792条查询结果,搜索用时 265 毫秒
71.
72.
In 2008, the stable seagrass beds of the Mira estuary (SW Portugal) disappeared completely; however, during 2009, they have begun to present early symptoms of natural recovery, characterised by a strongly heterogeneous distribution. This study was designed to investigate the spatial and temporal variability patterns of species composition, densities and trophic composition of the benthic nematode assemblages in this early recovery process, at two sampling sites with three stations each and at five sampling occasions. Because of the erratic and highly patchy seagrass recovery and the high environmental similarity of the two sampling sites, we expected within-site variability in nematode assemblages to exceed between-site variability. However, contrary to that expectation, whilst nematode genus composition was broadly similar between sites, nematode densities differed significantly between sites, and this between-site variability exceeded within-site variability. This may be linked to differences in the Zostera recovery patterns between both sites. In addition, no clear temporal patterns of nematode density, trophic composition and diversity were evident. Nematode assemblages generally resembled those of other estuarine muddy intertidal areas, which have a high tolerance of stress conditions.  相似文献   
73.
Mangrove Lagoon, located on the island of St. Croix, US Virgin Islands (USVI), is one of few actively bioluminescent lagoons in a location experiencing significant anthropogenic impacts. The bioluminescence is due to an abundance of the dinoflagellate Pyrodinium bahamense in the water column. We recovered surface sediments and sediment cores from Mangrove Lagoon to analyze the spatial distribution and temporal variability of P. bahamense cysts in this system. Surface sediment P. bahamense cyst concentrations ranged from 0 to 466 cysts g?1 dry sediment, with higher abundances associated with elevated surface water nutrient concentrations and a mixed terrestrial–marine organic matter source regime. In combination with available bioassay data, we hypothesize that phytoplankton utilize nutrients rapidly and subsequent decay of organic matter makes nutrients available for dinoflagellates at the sediment–water interface in the eastern and northern quadrants of the lagoon. However, the nutrients are rapidly exhausted during counterclockwise lagoon circulation resulting in the decline of primary productivity and dinoflagellate abundance in the western quadrants. Downcore profiles suggest that P. bahamense blooms have been occurring for decades, declining in recent years. No cysts were present in sediments predating dredging activities of the 1960s that created Mangrove Lagoon. Recent reductions in cyst abundance may be the result of limited primary productivity caused by restricted water exchange with Salt River Bay due to shallowing of a sill at the mouth of the lagoon. This research highlights the need for more comprehensive geochemical and fossil analyses to better understand long-term ecological variability and inform conservation efforts of these unique habitats.  相似文献   
74.
75.
Tidal marsh (re)creation on formerly embanked land is increasingly executed along estuaries and coasts in Europe and the USA, either by restoring complete or by reduced tidal exchange. Ecosystem functioning and services are largely affected by the hydro-geomorphologic development of these areas. For natural marshes, the latter is known to be steered by feedbacks between tidal inundation and sediment accretion, allowing marshes to reach and maintain an equilibrium elevation relative to the mean sea level. However, for marsh restoration sites, these feedbacks may be disturbed depending on the restoration design. This was investigated by comparing the inundation-elevation change feedbacks in a natural versus restoration site with reduced tidal exchange in the Scheldt estuary (Belgium). This study analyzes long-term (9 years) datasets on elevation change and tidal inundation properties to disentangle the different mechanisms behind this elevation-inundation feedback. Moreover, subsequent changes in sediment properties that may affect this feedback were explored. In the restoration area with reduced tidal exchange, we found a different elevation-inundation feedback than on natural marshes, which is a positive feedback on initially high sites (i.e., sediment accretion leads to increasing inundation, hence causing accelerating sediment accretion rates) and a gradual silting up of the whole area. Furthermore, there is evidence for the presence of a relict consolidated sediment layer. Consequently, shallow subsidence is less likely to occur. Although short-term ecological development of the tidal marsh was not impeded, long-term habitat development may be affected by the differences in hydro-geomorphological interactions. An increase of inundation frequency on the initially high sites may cause inhibition of habitat succession or even reversed succession. Over time, the climax state of the restoration area may be different compared to natural marshes. Moreover, sediment-related ecosystem services, such as nutrient and carbon burial, may be positively influenced because of continuing sedimentation, although flood water storage potential will decrease with increasing elevation. Depending on the restoration goals, ecosystem trajectories and delivery of ecosystem services can be controlled by adaptive management of the tidal volume entering the restoration area.  相似文献   
76.
Controls on organic matter cycling across the tidal wetland-estuary interface have proved elusive, but high-resolution observations coupled with process-based modeling can be a powerful methodology to address shortcomings in either methodology alone. In this study, detailed observations and three-dimensional hydrodynamic modeling are used to examine biogeochemical exchanges in the marsh-estuary system of the Rhode River, MD, USA. Analysis of observations near the marsh in 2015 reveals a strong relationship between marsh creek salinity and dissolved organic matter fluorescence (fDOM), with wind velocity indirectly driving large amplitude variation of both salinity and fDOM at certain times of the year. Three-dimensional model results from the Finite Volume Community Ocean Model implemented for the wetland system with a new marsh grass drag module are consistent with observations, simulating sub-tidal variability of marsh creek salinity. The model results exhibit an interaction between wind-driven variation in surface elevation and flow velocity at the marsh creek, with northerly winds driving increased freshwater signal and discharge out of the modeled wetland during precipitation events. Wind setup of a water surface elevation gradient axially along the estuary drives the modeled local sub-tidal flow and thus salinity variability. On sub-tidal time scales (>36 h, <1 week), wind is important in mediating dissolved organic matter releases from the Kirkpatrick Marsh into the Rhode River.  相似文献   
77.
78.

Background

Concern about climate change has motivated France to reduce its reliance on fossil fuel by setting targets for increased biomass-based renewable energy production. This study quantifies the carbon costs and benefits for the French forestry sector in meeting these targets. A forest growth and harvest simulator was developed for French forests using recent forest inventory data, and the wood-use chain was reconstructed from national wood product statistics. We then projected wood production, bioenergy production, and carbon balance for three realistic intensification scenarios and a business-as-usual scenario. These intensification scenarios targeted either overstocked, harvest-delayed or currently actively managed stands.

Results

All three intensification strategies produced 11.6–12.4 million tonnes of oil equivalent per year of wood-based energy by 2026, which corresponds to the target assigned to French wood-energy to meet the EU 2020 renewable energy target. Sustaining this level past 2026 will be challenging, let alone further increasing it. Although energy production targets can be reached, the management intensification required will degrade the near-term carbon balance of the forestry sector, compared to continuing present-day management. Even for the best-performing intensification strategy, i.e., reducing the harvest diameter of actively managed stands, the carbon benefits would only become apparent after 2040. The carbon balance of a strategy putting abandoned forests back into production would only break even by 2055; the carbon balance from increasing thinning in managed but untended stands would not break even within the studied time periods, i.e. 2015–2045 and 2046–2100. Owing to the temporal dynamics in the components of the carbon balance, i.e., the biomass stock in the forest, the carbon stock in wood products, and substitution benefits, the merit order of the examined strategies varies over time.

Conclusions

No single solution was found to improve the carbon balance of the forestry sector by 2040 in a way that also met energy targets. We therefore searched for the intensification scenario that produces energy at the lowest carbon cost. Reducing rotation time of actively managed stands is slightly more efficient than targeting harvest-delayed stands, but in both cases, each unit of energy produced has a carbon cost that only turns into a benefit between 2060 and 2080.
  相似文献   
79.
Much is known about how climate change impacts ecosystem richness and turnover, but we have less understanding of its influence on ecosystem structures. Here, we use ecological metrics (beta diversity, compositional disorder and network skewness) to quantify the community structural responses of temperature-sensitive chironomids (Diptera: Chironomidae) during the Late Glacial (14 700–11 700 cal a bp ) and Holocene (11 700 cal a bp to present). Analyses demonstrate high turnover (beta diversity) of chironomid composition across both epochs; however, structural metrics stayed relatively intact. Compositional disorder and skewness show greatest structural change in the Younger Dryas, following the rapid, high-magnitude climate change at the Bølling–Allerød to Younger Dryas transition. There were fewer climate-related structural changes across the early to mid–late Holocene, where climate change was more gradual and lower in magnitude. The reduced impact on structural metrics could be due to greater functional resilience provided by the wider chironomid community, or to the replacement of same functional-type taxa in the network structure. These results provide insight into how future rapid climate change may alter chironomid communities and could suggest that while turnover may remain high under a rapidly warming climate, community structural dynamics retain some resilience.  相似文献   
80.
Air pollution and its related health impacts are a global concern. This paper addresses how current policies on air pollution, climate change and access to clean cooking fuels can effectively reduce both outdoor and household air pollution and improve human health. A state of the art modeling framework is used that combines an integrated assessment model and an atmospheric model to estimate the spatial extent and distribution of outdoor air pollution exposures. Estimates of household energy access and use are modeled by accounting for heterogeneous household energy choices and affordability constraints for rural and urban populations spanning the entire income distribution. Results are presented for 2030 for a set of policy scenarios on air pollution, climate change and energy access and include spatially explicit emissions of air pollutants; ambient concentrations of PM2.5; and health impacts in terms of disability adjusted life years (DALYs) from both ambient and household air pollution. The results stress the importance of enforcing current worldwide air quality legislation in addressing the impacts of outdoor air pollution. A combination of stringent policies on outdoor air pollution, climate change and access to clean cooking fuels is found to be effective in achieving reductions in average ambient PM2.5 exposures to below World Health Organization recommended levels for a majority of the world's population and results in a significant decline in the global burden of disease from both outdoor and household air pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号