首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   4篇
  国内免费   1篇
测绘学   2篇
大气科学   5篇
地球物理   46篇
地质学   20篇
天文学   6篇
综合类   3篇
自然地理   8篇
  2020年   3篇
  2019年   1篇
  2018年   9篇
  2017年   11篇
  2016年   5篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   9篇
  2010年   7篇
  2009年   5篇
  2008年   3篇
  2007年   9篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1997年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
21.
22.
This study investigates atmospheric conditions’ influence on the mean and extreme characteristics of PM10 concentrations in Poznań during the period 2006–2013. A correlation analysis was carried out to identify the most important meteorological variables influencing the seasonal dynamics of PM10 concentrations. The highest absolute correlation values were obtained for planetary boundary layer height (r = ?0.57), thermal (daily minimum air temperature: r = ?0.51), anemological (average daily wind speed: r = ?0.37), and pluvial (precipitation occurrence: r = ?0.36) conditions, however the highest correlations were observed for temporal autocorrelations (1 day lag: r = 0.70). As regulated by law, extreme events were identified on the basis of daily threshold value i.e. 50 μg m?3. On average, annually there are approximately 71.3 days anywhere in the city when the threshold value is exceeded, 46.6 % of those occur in winter. Additionally, 83.7 % of these cases have been found to be continuous episodes of a few days, with the longest one persisting for 22 days. The analysis of the macro-scale circulation patterns led to the identification of an easy-to-perceive seasonal relations between atmospheric fields that favour the occurrence of high PM10 concentration, as well as synoptic situations contributing to the rapid air quality improvement. The highest PM10 concentrations are a clear reaction to a decrease in air temperature by over 3 °C, with simultaneous lowering of PBL height, mean wind speed (by around 1 m s?1) and changing dominant wind directions from western to eastern sectors. In most cases, such a situation is related to the expansion of a high pressure system over eastern Europe and weakening of the Icelandic Low. Usually, air quality conditions improve along with an intensification of westerlies associated with the occurrence of low pressure systems over western and central Europe. Opposite relations are distinguishable in summer, when air quality deterioration is related to the inflow of tropical air masses originating over the Sahara desert.  相似文献   
23.
Rocky habitats are regarded as biodiversity hot-spots.Along with high species diversity,diverse ecological relationships can be observed in these habitats.Large groups of bird species use rocks in various ways:as perching/roosting sites,breeding or foraging habitats,information exchange sites,display arenas or as sources of minerals and water.Because of the inaccessibility of these environments,their role and importance to animals has been underestimated.We evaluated the use of rocky habitats by birds in the Tatra Mountains(49°13'N,19°57'E,Carpathians,central Europe).Rocky habitats were used by 29 bird species,eight of which used cliffs directly(i.e.for nesting,foraging or resting).The number of species recorded as using cliffs was correlated with the surface area of the cliff face.A total of 20 forms of rocky habitat use were recorded,in five behavioural categories:vocalization,foraging,perching,flight and nesting.Prevailing behaviours were flying by a rock face,circling above the face,and vocalization on a tree/shrub growing next to a rock.Rocks provide a nesting habitat for specialized petrophilic species and permit the existence of numerous ecological relations between species and habitats.The results of this study show that rocky habitats support the diversity of ecological relationships.  相似文献   
24.
All dunes within a dunefield usually show a similar response to the wind regime. However, in the late‐Holocene coastal dunefield in NW Poland the surface topography suggests that slipface orientation may vary significantly with distance from the coast, which is rarely reported in the literature. The dunefield was stabilized with forest in the mid‐19th century, preserving a unique record of atmospheric circulation in the South Baltic region at the end of the Little Ice Age. To elucidate the Holocene processes occurring along the study site a pseudo‐3D GPR data set was collected. Six grids of parallel GPR lines combined with 400 m of GPR profiles (2D) were collected across the dunefield and displayed using GOCAD for interpretation and geostatistical analysis. The geophysical data revealed that the larger dunes almost entirely consist of steeply laminated facies. Most importantly the pseudo‐3D data, supported by geostatistical estimates of strata dip directions, revealed the existence of three zones parallel to the coastline with the mean dip direction almost perpendicular to the coast in the northern coastal strip and almost parallel to it in the southern part. Spreads of the dip directions in pseudo‐3D GPR data sets recorded on the stoss slopes of dunes and crests suggested initial deposition on transverse dunes, which later were transformed into barchanoid dunes. This can probably be linked to changes in the wind regime, i.e. reduction in velocity of the northern and northwestern winds leading to reduced sediment supply from the coast. While the data provide a new interpretation of Holocene dunefield dynamics at this site, they also suggest that the minimum number of pseudo‐3D GPR grids required to establish general trends using geostatistical analysis should be at least 10, with even more data needed at larger, or more complex dunefields.  相似文献   
25.
During floods, large quantities of wood can be mobilized and transported downstream. At critical sections, such as bridges, the transported wood might be entrapped and a quick succession of backwater effects can occur as a result of the reduction of the cross‐sectional area. The aim of this work is to explore large wood‐related hazards during floods in the gravel‐bed river Czarny Dunajec (Polish Carpathians), where the river flows through the village of D?ugopole. This work is based on the numerical modelling of large wood transport together with flow dynamics in which inlet and boundary conditions were designed based on field observations. The exploratory approach developed in this study uses multiple scenarios (193) to analyse the factors controlling bridge clogging: wood size, wood supply, flow conditions, morphology and obstacles in the riverbed. Results highlighted the strong control of log length (stronger than that of log diameter) on potential blockage probability; however, according to our results the main factor controlling bridge clogging was the flood discharge. River morphology and wood supply play an important role as well. The river morphology may reduce bridge blockage, as it influences flow velocity and depth, and creates natural retention zones for wood. In addition, the impacts of bridge blockage were analysed in terms of afflux depth and length, and flooded area. Results showed that bridge blockage may result in a significant increase in water depth (up to 0.7 m) and flooded area (up to 33% more), therefore increasing flood risk in the village. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
26.
This paper addresses the issue of the quantitative characterization of the structure of the calibration model (phantom) for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI) scanners. The aim of this study was to verify manufacturing assumptions of the structure of materials, since phantoms are used for BSD-DTI calibration directly after manufacturing. Visualization of the phantoms’ structure was achieved through optical microscopy and high-resolution computed microtomography (µCT). Using µCT images, a numerical model of the materials structure was developed for further quantitative analysis. 3D image characterization was performed to determine crucial structural parameters of the phantom: porosity, uniformity and distribution of equivalent diameter of capillary bundles. Additionally calculations of hypothetical flow streamlines were also performed based on the numerical model that was developed. The results obtained in this study can be used in the calibration of DTI-BST measurements. However, it was found that the structure of the phantom exhibits flaws and discrepancies from the assumed geometry which might affect BSD-DTI calibration.  相似文献   
27.
Water Resources - The issues related to the assessment of the hydro morphological status of urban rivers in order to identify the revitalisation actions possible to be carried out, has been...  相似文献   
28.
SHRIMP dating of detrital zircons from sandstones of the Gackowa Formation (Kaczawa Complex, Sudetes, SW Poland) indicates input from late (550–750 Ma) and early Proterozoic to Archaean sources (∼2.0–3.4 Ga, the latter being the oldest recorded age from the Sudetic region). These dates preclude within-terrane derivation from seemingly correlatory acid volcanic rocks of early Palaeozoic age. Rather, they indicate provenance from Cadomian and older rocks that currently form part of other, geographically distant terranes; the most likely source identified to date is the Lusatian Block in the Saxothuringian Zone. Hence, the Gackowa Formation may be late Proterozoic rather than early Palaeozoic in depositional age, possibly coeval with the late Proterozoic (pre-Cadomian) greywackes of Lusatia, being subsequently tectonically interleaved with early Palaeozoic volcanic rocks into the Kaczawa accretionary prism during the Variscan orogeny. However, correlation with the lithologically similar early Ordovician Dubrau Quartzite of Saxothuringia, and so assignation to the early Paleozoic (post-Cadomian) rift succession deposited at the northern margin of Gondwana, cannot yet be precluded.  相似文献   
29.
The thin-layer build of the Carpathian Foredeep Miocene formations and large petrophysical parameter variation cause seismic images of gas-saturated zones to be ambiguous, and the location of prospection wells on the basis of anomalous seismic record is risky. A method that assists reservoir interpretation of standard recorded seismic profiles (P waves) can be a converted wave recording (PS waves). This paper presents the results of application of a multicomponent seismic survey for the reservoir interpretation over the Chałupki Dębniańskie gas deposit, carried out for the first time in Poland by Geofizyka Kraków Ltd. for the Polish Oil and Gas Company. Seismic modeling was applied as the basic research tool, using the SeisMod program based on the finite-difference solution of the acoustic wave equation and equations of motion. Seismogeological models for P waves were developed using Acoustic Logs; S-wave model (records only from part of the well) was developed on the basis of theoretical curves calculated by means of the Estymacja program calibrated with average S-velocities, calculated by correlation of recorded P and PS wavefields with 1D modeling. The conformity between theoretical and recorded wavefields makes it possible to apply the criteria established on the basis of modeling for reservoir interpretation. Direct hydrocarbon indicators (bright spots, phase change, time sag) unambiguously identify gas-prone layers within the ChD-2 prospect. A partial range of the indicators observed in the SW part of the studied profile (bright spot that covers a single, anticlinally bent seismic horizon) points to saturation of the horizon. The proposed location is confirmed by criteria determined for converted waves (continuous seismic horizons with constant, high amplitude) despite poorer agreement between theoretical and recorded wavefields.  相似文献   
30.
The paper presents and analyzes, from the point of view of smooth dynamic systems theory, a two-layer baroclinic model of the troposphere in geostrophic approximation. The model describes airflow in β-channel within the tropospheric part of the main Hadley circulation cell. It enables to obtain, after application of the Galerkin method, a fairly simple low-parametric dynamic system describing the phenomena of non-linear interactions, bifurcations and blocking in the atmosphere. This enables to take into consideration such basic factors influencing the atmospheric dynamics like the heat exchange within the surface, orography, vertical variability of zonal wind and hydrostatic stability. Impact of zonal thermal variability of the surface and vertical shear of zonal wind in the troposphere on the orographic bifurcation was investigated and the oscillation character in the dynamic system after Hopf bifurcation of the second kind was analyzed. Additionally, the model dynamics was investigated in conditions including momentum forcing in the upper and lower parts of the troposphere and excluding orographic interaction, as well as in the conditions of thermal interaction between the troposphere and the surface for the vertical shear of zonal wind in both tropospheric layers. Impact of the mean zonal wind in the troposphere on the properties of model dynamics was assessed. It was proved that zonally varied surface temperature and layered mean zonal wind in the atmosphere are the parameters that have basic influence on the model dynamics. They cause numerous bifurcations and strongly influence the periods of oscillations of the model variables. They are often Hopf bifurcations of the second kind during which tropospheric states fairly distant from the ones before the bifurcations are generated. This significantly influences the model predictability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号