首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   4篇
测绘学   1篇
大气科学   6篇
地球物理   40篇
地质学   67篇
海洋学   13篇
天文学   48篇
综合类   2篇
自然地理   25篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   2篇
  2011年   10篇
  2010年   3篇
  2009年   7篇
  2008年   6篇
  2007年   10篇
  2006年   7篇
  2005年   1篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   6篇
  2000年   5篇
  1999年   1篇
  1998年   6篇
  1997年   5篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   6篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   5篇
  1977年   5篇
  1976年   1篇
  1975年   4篇
  1973年   3篇
  1972年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有202条查询结果,搜索用时 0 毫秒
201.
Limestone dolomitization is an example of a fluid-induced mineralogical transformation that commonly affects extensive rock volumes. To understand the mechanisms enabling these efficient replacement reactions, we investigated experimentally the dolomitization of a fractured calcite marble under flow-through conditions at mild hydrothermal conditions. Contrary to most earlier studies of coupled dissolution reprecipitation reactions that were conducted using small, individual grains, in this study, the integrity of the rock was preserved, so that the experiment explored the links between flow in a fracture and fluid–rock interaction. In these experiments, grain boundaries acted as microreactors, in which a Mg-poor ‘protodolomite’ formed initially, and then transformed into dolomite. The difficulty in nucleating dolomite played a key role in controlling the evolution of the porosity, by allowing for (1) initial dissolution along grain boundaries, and (2) formation of coarse porosity at the reaction interface. This porosity evolution not only enabled the reaction to progress efficiently, but also controlled the mineralogy of the system, as shown by brucite replacing calcite near the fracture once the fluid along calcite grain boundaries became sufficiently connected to the fluid flowing through the fracture. This study illustrates the role of grain boundaries, porosity evolution and nucleation in controlling reaction progress as well as the nature and textures of the products in pervasive mineralogical transformations.  相似文献   
202.
Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U–Th–Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), \(\left( 10\bar{1} \right)\), \(~\{110\}\), \(\left\{ 212 \right\},\) and type two (irrational) twin planes with rational shear directions in \([0\bar{1}\bar{1}]\) and \([\bar{1}\bar{1}0]\). SIMS U–Th–Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010?±?15 Ma (2σ, n?=?9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259?±?5 Ma (2σ, n?=?7), which is consistent with previous impact age estimates of 255?±?3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ U–Th–Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号