首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   1篇
测绘学   1篇
大气科学   11篇
地球物理   37篇
地质学   64篇
海洋学   20篇
天文学   33篇
自然地理   30篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2017年   6篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   4篇
  2011年   1篇
  2010年   3篇
  2009年   10篇
  2008年   11篇
  2007年   9篇
  2006年   9篇
  2005年   10篇
  2004年   11篇
  2003年   15篇
  2002年   10篇
  2001年   3篇
  2000年   4篇
  1999年   7篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
81.
The ~200-km-long intensely deformed Singhbhum Shear Zone (SSZ) in eastern India hosts India’s largest U and Cu deposits and related Fe mineralization. The SSZ separates an Archaean cratonic nucleus to the south from a Mesoproterozoic fold belt in the North and has a complex geologic history that obscures the origin of the contained iron-oxide-rich mineral deposits. This study investigates aspects of the history of mineralization in the SSZ by utilizing new petrographic and electron microprobe observations of pyrite textures and zoning in the Turamdih U–Cu(–Fe) deposit. Mineralization at Turamdih is hosted in intensively deformed quartz–chlorite schist. Sulfides and oxides include, in inferred order of development: (a) magmatic Fe(–Ti–Cr) oxide and Fe–Cu(–Ni) sulfide minerals inferred to be magmatic (?) in origin; followed by (b) uranium, Fe-oxide, and Fe–Cu(–Co) sulfide minerals that predate most or all ductile deformation, and are inferred to be of hydrothermal origin; and (c) Fe–Cu sulfides that were generated during and postdating ductile deformation. These features are associated with the formation of three compositionally and texturally distinct pyrites. Pyrite (type-A), typically in globular–semiglobular composite inclusions of pyrite plus chalcopyrite in magnetite, is characterized by very high Ni content (up to 30,700 ppm) and low Co to Ni ratios (0.01–0.61). The textural and compositional characteristics of associated chalcopyrite and rare pyrrhotite suggest that this pyrite could be linked to the magmatic event via selective replacement of magmatic pyrrhotite. Alternatively, this pyrite and associated sulfide inclusions might be cogenetic with hydrothermal Fe-oxide. Type-B pyrite that forms elongate grains and irregular relics and cores of pyrite with high Co contents (up to 23,630 ppm) and high Co to Ni ratios (7.2–140.9) are interpreted to be related to hydrothermal mineralization predating ductile deformation. A third generation of pyrite (type C) with low Co, low Ni, and moderate Co to Ni ratios (0.19–13.93) formed during and postdating the ductile deformation stage overgrowing, replacing, and surrounding type-B pyrite. The textural evolution of pyrite parallels the tectonometamorphic evolution of the shear zone demonstrating grain elongation during progressive ductile deformation and prograde metamorphism, annealing at the peak metamorphic condition, porphyroblastic growth at the retrograde path and cataclasis following porphyroblastic growth. Compositional characteristics of hydrothermal pyrite and available geological information suggest that the U–Cu(–Fe) deposit at Turamdih might be a variant of the Fe oxide (–Cu–U–rare earth elements) family of deposits.  相似文献   
82.
Hatton Bank (northwest U.K.) continental margin structure   总被引:1,自引:0,他引:1  
Summary. The continent-ocean transition near Hatton Bank was studied using a dense grid of single-ship and two-ship multichannel seismic (mcs) profiles. Extensive oceanward dipping reflectors in a sequence of igneous rocks are developed in the upper crust across the entire margin. At the landward (shallowest) end the dipping reflectors overlie continental crust, while at the seaward end they are formed above oceanic crust. Beneath the central and lower part of the margin is a mid-crustal layer approximately 5 km thick that could be either stretched and thinned continental crust or maybe newly formed igneous crust generated at the same time as the dipping reflector sequence. Beneath this mid-crustal layer and above a well defined seismic Moho which rises from 27 km (continental end) to 15 km (oceanic end) across the margin, the present lower crust comprises a 10–15 km thick lens of material with a seismic velocity of 7.3 to 7.4 km/s. We interpret the present lower crustal lens as underplated igneous rocks left after extraction of the extruded basaltic lavas, A considerable quantity of new material has been added to the crust under the rifted margin. The present Moho is a new boundary formed during creation of the margin and cannot, therefore, be used to determine the amount of thinning.  相似文献   
83.
Summary. The lithospheric stretching model for the formation of sedimentary basins was tested in the central North Sea by a combined study of crustal thinning and basement subsidence patterns. A profile of crustal structure was obtained by shooting a long-range seismic experiment across the Central Graben, the main axis of subsidence. A seabed array of 12 seismometers in the graben was used to record shots fired in a line 530 km long across the basin. The data collected during the experiment were interpreted by modelling synthetic seismograms from a laterally varying structure, and the final model showed substantial crustal thinning beneath the graben. Subsidence data from 19 exploration wells were analysed to obtain subsidence patterns in the central North Sea since Jurassic times. Changes in water depth were quantified using foraminiferal assemblages where possible, and observed basement subsidence paths were corrected for sediment loading, compaction and changes in water depth through time. The seismic model is shown to be compatible with the observed gravity field, and the small size of observed gravity anomalies is used to argue that the basin is in local isostatic equilibrium. Both crustal thinning and basement subsidence studies indicate about 70 km of stretching across the Central Graben during the mid-Jurassic to early Cretaceous extensional event. This extension appears to have occurred over crust already slightly thinned beneath the graben, and the seismic data suggest that total extension since the early Permian may have been more than 100km. The data presented here may all be explained using a simple model of uniform extension of the lithosphere.  相似文献   
84.
We present a new method for producing a ‘brute’ velocity image rapidly and automatically from traveltimes picked from densely sampled refraction data. The procedure involves imaging by data transformation from the time–offset domain into the tau–p (intercept–slope) domain, and does not include conventional modelling steps. Differences in apparent velocity and tau along reciprocal paths in the up- and downdip directions allow the estimation of the true velocity and geometrical position of the ray turning points. The tau–velocity–turningpoint (τνx) map distributes phases automatically on the basis of geometry and velocity to give a two-dimensional representation of subsurface structure. This map may be converted simply to depth and two-way-time images. Such images have potential for direct geological interpretation, for use as a starting model for seismic inversion, for superimposition on to conventional reflection images, or for input into prestack depth migration and other processing routines.  相似文献   
85.
Analyses of over 600 archaeomagnetic data compiled by Burlatskaya and Nachasova (1977) illustrate that our knowledge of the intensity of the Earth's magnetic field is much poorer than generally believed. The data exhibit high scatter and the distribution of sampling localities is extremely limited. Rock magnetic and experimental contributions to the scatter are probably significant, although it is impossible to determine uniquely the sources of scatter without a substantial increase in the data base and without making additional assumptions about the past magnetic field behaviour. Nevertheless, when averaged in 1000 year intervals, the archaeomagnetic intensity data for the past 5000 years can be simply, but non-uniquely, interpreted in terms of a change in the intensity of the dipole field. This interpretation is broadly consistent with independent evidence from radiocarbon data. Because of inconsistencies in radiocarbon data prior to 8000 years B.P. and because of inadequacies in the archaeomagnetic data, the previously alleged sinusoidal variation of the dipole field intensity with a period of 8000–9000 years should be regarded as highly tentative.  相似文献   
86.
THE APPLICATION OF PHOTOGRAMMETRY TO THE STABILITY OF EXCAVATED ROCK SLOPES   总被引:5,自引:0,他引:5  
The use of phototheodolite photography and the subsequent photogrammetric measurements as the basis for slope stability analysis in open pit mines is described together with the application of stereometric photography to the measurement of roughness profiles on real and model rock samples. A single camera technique for the measurement of displacements occurring during the excavation of a model rock slope is explained.  相似文献   
87.
Review of a new shear-strength criterion for rock joints   总被引:44,自引:0,他引:44  
Barton, N., 1973. Review of a new shear-strength criterion for rock joints. Eng. Geol., 7: 287–332.

The surface roughness of rock joints depends on their mode of origin, and on the mineralogy of the rock. Amongst the roughest joints will be those that formed in intrusive rocks in a tensile brittle manner, and amongst the smoothest the planar cleavage surface in slates. The range of friction angles exhibited by this spectrum will vary from about 75° or 80° down to 20° or 25°, the maximum values being very dependent on the normal stress, due to the strongly curved nature of the peak strength envelopes for rough unfilled joints.

Direct shear tests performed on model tension fractures have provided a very realistic picture of the behaviour of unfilled joints at the roughest end of the joint spectrum. The peak shear strength of rough—undulating joints such as tension surfaces can now be predicted with acceptable accuracy from a knowledge of only one parameter, namely the effective joint wall compressive strength or JCS value. For an unweathered joint this will be simply the unconfined compression strength of the unweathered rock. However in most cases joint walls will be weathered to some degree. Methods of estimating the strength of the weathered rock are discussed. The predicted values of shear strength compare favourably with experimental results reported in the literature, both for weathered and unweathered rough joints.

The shear strength of unfilled joints of intermediate roughness presents a problem since at present there is insufficient detailed reporting of test results. In an effort to remedy this situation, a simple roughness classification method has been devised which has a sliding scale of roughness. The curvature of the proposed strength envelopes reduces as the roughness coefficient reduces, and also varies with the strength of the weathered joint wall or unweathered rock, whichever is relevant. Values of the Coulomb parameters c and Φ fitted to the curves between the commonly used normal stress range of 5–20 kg/cm2 appear to agree quite closely with experimental results.

The presence of water is found in practice to reduce the shear strength of rough unfilled joints but hardly to affect the strength of planar surfaces. This surprising experimental result is also predicted by the proposed criterion for peak strength. The shear strength depends on the compressive strength which is itself reduced by the presence of water. The sliding scale of roughness incorporates a reduced contribution from the compressive strength as the joint roughness reduces. Based on the same model, it is possible to draw an interesting analogy between the effects of weathering, saturation, time to failure, and scale, on the shear strength of non-planar joints. Increasing these parameters causes a reduction in the compressive strength of the rock, and hence a reduction in the peak shear strength. Rough—undulating joints are most affected and smooth—nearly planar joints least of all.  相似文献   

88.
89.
The Hawaiian Islands permit investigation of tropical chemical weathering rates and processes on a single rock type, basalt. Chronosequences are investigated as a function of rainfall due to the varying age of each island, including Kauai (~4 Ma), Oahu (~2 Ma), and Hawaii's Kohala Peninsula (~0.3 to 0.17 Ma). Understanding tropical critical zone (CZ) development is vital given the large populations in developing countries that rely on it. HVSR (horizontal-to-vertical spectral ratio) seismic soundings on Kauai indicate that ~60% of the variability in laterite thickness is due to gradients in precipitation, with errors in erosion corrections and variability in the original permeability structure of the volcanic sequence playing important roles. Basalts have higher horizontal than vertical hydraulic conductivity (Kh > Kv) , and local variability in likely drives much of the remaining differences in laterite thickness. HVSR is well suited for estimating laterite thickness as it has been shown to reliably detect the base of the weathering profile, is rapid (20 min/sounding), highly portable, and occupies a very small footprint. Comparison of Kauai and Oahu weathering profiles suggests that the Oahu laterites are fully or nearly fully formed, despite being half the age of Kauai. By contrast, the young laterites on Kohala (~170 to ~300 ka) exhibit greatly contrasting thicknesses, where coastal laterites are thick and interior laterites are thin, suggesting that early weathering on shield volcanoes produces wedge-shaped laterites near the coast. With time, the thick (coastal) end of the wedge propagates upslope such that a fully developed, constant-thickness laterite carapace can form in ~2 Ma or less. The development of thickened coastal laterites on young substrates depends on greater water–rock ratios as vertically infiltrating water upslope is diverted laterally. This view of laterite development is very different compared to endmember models of continental weathering and CZ development. © 2020 John Wiley & Sons, Ltd.  相似文献   
90.
The coals of the upper part of the Mansfield, Brazil, and the lower part of the Staunton Formations (Atokan and Desmoinesian, Pennsylvanian) in Indiana (Illinois Basin) are characteristically thin and discontinuous. As a result, problems with correlation and identification of the seams have persisted for both researchers and industry. These discrepancies affect coal exploration, mine planning, and subsequently coal-fired utilities. This study presents exploration and operational examples demonstrating some of the correlation problems associated with the coals of the Brazil Formation, and the Upper Block and Lower Block, in particular, and the surrounding upper part of the Mansfield Formation and lower part of the Staunton Formations. Based on exploration boreholes, mine scale observations, and coal quality and petrographic data, this study suggests that (1) the coal mapped as the Upper Block Coal Member of Clay County may, in fact, be the same seam as the Lower Block Coal Member of Daviess County; and (2) the Lower Block coal of Clay County is not present south of the Switz City area of central Greene County, IN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号