首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1028篇
  免费   51篇
  国内免费   7篇
测绘学   18篇
大气科学   110篇
地球物理   253篇
地质学   466篇
海洋学   62篇
天文学   119篇
综合类   4篇
自然地理   54篇
  2023年   4篇
  2022年   4篇
  2021年   17篇
  2020年   22篇
  2019年   17篇
  2018年   26篇
  2017年   37篇
  2016年   25篇
  2015年   41篇
  2014年   42篇
  2013年   65篇
  2012年   52篇
  2011年   60篇
  2010年   73篇
  2009年   58篇
  2008年   57篇
  2007年   52篇
  2006年   49篇
  2005年   53篇
  2004年   44篇
  2003年   34篇
  2002年   34篇
  2001年   24篇
  2000年   15篇
  1999年   10篇
  1998年   15篇
  1997年   14篇
  1996年   13篇
  1995年   16篇
  1994年   4篇
  1993年   13篇
  1992年   6篇
  1991年   4篇
  1990年   13篇
  1989年   6篇
  1988年   2篇
  1987年   13篇
  1986年   9篇
  1985年   7篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1973年   2篇
  1969年   1篇
排序方式: 共有1086条查询结果,搜索用时 15 毫秒
991.
The response of the Atlantic Meridional Overturning Circulation (AMOC) to an increase in atmospheric CO2 concentration is analyzed using the IPSL-CM4 coupled ocean–atmosphere model. Two simulations are integrated for 70 years with 1%/year increase in CO2 concentration until 2×CO2, and are then stabilized for further 430 years. The first simulation takes land-ice melting into account, via a simple parameterization, which results in a strong freshwater input of about 0.13 Sv at high latitudes in a warmer climate. During this scenario, the AMOC shuts down. A second simulation does not include this land-ice melting and herein, the AMOC recovers after 200 years. This behavior shows that this model is close to an AMOC shutdown threshold under global warming conditions, due to continuous input of land-ice melting. The analysis of the origin of density changes in the Northern Hemisphere convection sites allows an identification as to the origin of the changes in the AMOC. The processes that decrease the AMOC are the reduction of surface cooling due to the reduction in the air–sea temperature gradient as the atmosphere warms and the local freshening of convection sites that results from the increase in local freshwater forcing. Two processes also control the recovery of the AMOC: the northward advection of positive salinity anomalies from the tropics and the decrease in sea-ice transport through the Fram Strait toward the convection sites. The quantification of the AMOC related feedbacks shows that the salinity related processes contribute to a strong positive feedback, while feedback related to temperature processes is negative but remains small as there is a compensation between heat transport and surface heat flux in ocean–atmosphere coupled model. We conclude that in our model, AMOC feedbacks amplify land-ice melting perturbation by 2.5.  相似文献   
992.
993.
Interpreting the postglacial climate history of the European continent using pollen data has proven difficult due in part to human modification of the landscape. Separating climate from human-caused changes in the vegetation requires a strategy for determining times of change across the entire region. We quantified transitions in the vegetation across Europe during the past 12,000 years using a mixture model approach on two datasets: radiocarbon dates from pollen diagrams and zone boundaries from selected reference sites. Major transitions in the vegetation, as recorded in pollen diagrams, appear synchronous across the continent. These transitions were also synchronous with those identified in North America pollen diagrams and major environmental changes recorded in North Atlantic marine records and Greenland ice cores. This synchronicity suggests that the major vegetation transitions in Europe during the Holocene and late glacial were primarily caused by large-scale atmospheric circulation change. These climate changes may have caused some of the cultural, political and migration changes in European societies during the Holocene.  相似文献   
994.
Climate model simulations available from the PMIP1, PMIP2 and CMIP (IPCC-AR4) intercomparison projects for past and future climate change simulations are examined in terms of polar temperature changes in comparison to global temperature changes and with respect to pre-industrial reference simulations. For the mid-Holocene (MH, 6,000 years ago), the models are forced by changes in the Earth’s orbital parameters. The MH PMIP1 atmosphere-only simulations conducted with sea surface temperatures fixed to modern conditions show no MH consistent response for the poles, whereas the new PMIP2 coupled atmosphere–ocean climate models systematically simulate a significant MH warming both for Greenland (but smaller than ice-core based estimates) and Antarctica (consistent with the range of ice-core based range). In both PMIP1 and PMIP2, the MH annual mean changes in global temperature are negligible, consistent with the MH orbital forcing. The simulated last glacial maximum (LGM, 21,000 years ago) to pre-industrial change in global mean temperature ranges between 3 and 7°C in PMIP1 and PMIP2 model runs, similar to the range of temperature change expected from a quadrupling of atmospheric CO2 concentrations in the CMIP simulations. Both LGM and future climate simulations are associated with a polar amplification of climate change. The range of glacial polar amplification in Greenland is strongly dependent on the ice sheet elevation changes prescribed to the climate models. All PMIP2 simulations systematically underestimate the reconstructed glacial–interglacial Greenland temperature change, while some of the simulations do capture the reconstructed glacial–interglacial Antarctic temperature change. Uncertainties in the prescribed central ice cap elevation cannot account for the temperature change underestimation by climate models. The variety of climate model sensitivities enables the exploration of the relative changes in polar temperature with respect to changes in global temperatures. Simulated changes of polar temperatures are strongly related to changes in simulated global temperatures for both future and LGM climates, confirming that ice-core-based reconstructions provide quantitative insights on global climate changes. An erratum to this article can be found at  相似文献   
995.
996.
The dynamics of near-surface streak formation in the neutrallystratified, rotating planetary boundary layer areinvestigated. The purpose of this note is to compare large-eddysimulation results to theoretical predictions suggesting thatstreaks are associated with non-normal mode optimal perturbations.Streaks are regions near the surface of alternating high and lowspeed fluid organized into nearly linear bands, with horizontalspacing of several hundred metres, oriented up to 30° relativeto the geostrophic wind, that evolve through a continuous cycle ofgeneration, growth, decay and reformation. We find that the earlystages of streak formation and growth are consistent with thelinear theory.  相似文献   
997.
The concentrations of authigenic phases of Cd, Re, U, and Mo increase with depth in four 45-cm-long sediment box cores collected along the axis of the Laurentian Trough, Gulf of St. Lawrence. Average authigenic accumulation rates, estimated from element inventories, are similar to rates in other continental margin environments. Strong regional variations in sediment accumulation rate and sulfide concentration have little influence on the accumulation rates of Cd and Re. This suggests that slow precipitation kinetics controls the accumulation of Cd and Re in these sediments. The accumulation rate of authigenic U is more variable; it may be tied to the kinetics of microbially mediated U reduction and be controlled by the availability of reactive organic matter. Authigenic Mo is distinguished by a sharp subsurface concentration minimum, above which Mo cycles with manganese. Mo released to pore water upon reduction of Mn oxides diffuses downward and enriches the subsurface sediment. Mo accumulates most rapidly in the sediment with the highest sulfide content. Slow conversion of molybdate to thiomolybdate may explain the much slower Mo accumulation rate in the less sulfidic sediments. A component of authigenic Mo accumulates with pyrite in an approximately constant Mo:Fe ratio. The accumulation rate of pyrite and associated Mo is insensitive to AVS abundance. Pyrite formation may be limited by the reactivity of iron oxide minerals.  相似文献   
998.
A geophysical survey in the eastern Gulf of Aden, between the Alula–Fartak (52°E) and the Socotra (55°E) transform faults, was carried out during the Encens–Sheba cruise. The conjugate margins of the Gulf are steep, narrow and asymmetric. Asymmetry of the rifting process is highlighted by the conjugate margins (horst and graben in the north and deep basin in the south). Two transfer fault zones separate the margins into three segments, whereas the present‐day Sheba Ridge is divided into two segments by a transform discontinuity. Therefore segmentation of the Sheba Ridge and that of the conjugate margins did coincide during the early stages of oceanic spreading. Extensive magma production is evidenced in the central part of the western segment. Anomaly 5d was identified in the northern and southern parts of the oceanic basin, thus confirming that seafloor spreading in this part of Gulf of Aden started at least 17.6 Ma ago.  相似文献   
999.
The cosmic ray exposure (CRE) ages of aubrites are among the longest of stone meteorites. New aubrites have been recovered in Antarctica, and these meteorites permit a substantial extension of the database on CRE ages, compositional characteristics, and regolith histories. We report He, Ne, and Ar isotopic abundances of nine aubrites and discuss the compositional data, the CRE ages, and regolith histories of this class of achondrites. A Ne three-isotope correlation reveals a solar-type ratio of 20Ne/22Ne = 12.1, which is distinct from the present solar wind composition and lower than most ratios observed on the lunar surface. For some aubrites, the cosmic ray-produced noble gas abundances include components produced on the surface of the parent object. The Kr isotopic systematics reveal significant neutron-capture-produced excesses in four aubrites, which is consistent with Sm and Gd isotopic anomalies previously documented in some aubrites. The nominal CRE ages confirm a non-uniform distribution of exposure times, but the evidence for a CRE age cluster appears doubtful. Six meteorites are regolith breccias with solar-type noble gases, and the observed neutron effects indicate a regolith history. ALH aubrites, which were recovered from the same location and are considered to represent a multiple fall, yield differing nominal CRE ages and, if paired, document distinct precompaction histories.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号