首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1220篇
  免费   71篇
  国内免费   11篇
测绘学   25篇
大气科学   99篇
地球物理   295篇
地质学   473篇
海洋学   120篇
天文学   218篇
综合类   2篇
自然地理   70篇
  2023年   8篇
  2021年   13篇
  2020年   16篇
  2019年   33篇
  2018年   34篇
  2017年   34篇
  2016年   37篇
  2015年   45篇
  2014年   54篇
  2013年   81篇
  2012年   50篇
  2011年   70篇
  2010年   53篇
  2009年   85篇
  2008年   58篇
  2007年   55篇
  2006年   57篇
  2005年   52篇
  2004年   56篇
  2003年   40篇
  2002年   35篇
  2001年   26篇
  2000年   14篇
  1999年   16篇
  1998年   13篇
  1997年   14篇
  1996年   14篇
  1995年   14篇
  1994年   8篇
  1993年   12篇
  1992年   13篇
  1991年   5篇
  1990年   4篇
  1989年   14篇
  1988年   6篇
  1987年   11篇
  1985年   9篇
  1984年   6篇
  1983年   18篇
  1982年   10篇
  1981年   15篇
  1980年   6篇
  1979年   7篇
  1978年   14篇
  1977年   6篇
  1976年   7篇
  1975年   7篇
  1974年   7篇
  1973年   5篇
  1969年   6篇
排序方式: 共有1302条查询结果,搜索用时 350 毫秒
91.
92.
93.
94.
Fluid inclusions and F, Cl concentration of hydrous minerals were analysed in the coesite-pyrope quartzite, the interlayered jadeite quartzite and their country-rock gneiss from the Dora-Maira massif using a combination of microthermometry, Raman spectrometry, synchrotron X-ray microfiuorescence and electron microprobe analysis. Three populations of fluid inclusions were recognized texturally and can be related to distinct metamorphic stages. A low-salinity aqueous fluid occurs in the retrogressed country gneiss and as late secondary inclusions in jadeite quartzite and chloritized pyrope. An earlier secondary population is found in matrix quartz of the jadeite- and pyro-pe-quartzites. This population can be related to the early decompression and so to incipient breakdown of garnet into phlogopite-bearing assemblages. The inclusion fluid is highly saline (up to 84 wt% equivalent NaCl) and contains Na, Ca, Fe, Cu and Zn as major cations. In pyrope quartzite, additional K was found in these brines, which locally coexist with CO2-rich inclusions. The oldest fluid inclusions are preserved in kyanite grains included in fresh pyrope and in pyrope itself. In pyrope, all inclusions have decrepitated and contain magnesite, an Mg-phosphate, sheet-silicate(s), a chloride and an opaque phase, with no fluid preser ved. In contrast, the kyanite inclusions in pyrope preserve primary H2O-CO2 low-salinity fluid inclusions, probably owing to the low compressibility of the kyanite inclusions and host garnet. In spite of in-situ re-equilibration, these inclusions can be interpreted as relics of the dehydration fluid that attended pyrope growth. These correlations between textural and chemical fluid inclusion data and metamorphic stages are consistent with the fluid composition calculated from the halogen content of different generations of phlogopite and biotite. The preservation of different fluid compositions, both in time and space, is evidence for local control and possibly origin of the fluids, in agreement with isotopic data. These results, in particular the absence of CO2 in the jadeite quartzite, are best interpreted in terms of a fluid-melt system evolution. With increasing metamorphism, partitioning of H2O, Na, Ca, Fe and heavy metals into melt (jadeite quartzite) and Mg, Na/K, F, CO2 and P(?) into a residual aqueous fluid can account for depletion in Na, Ca and Fe of the pyrope quartzite. During the retrograde path, a H 2 O rose as melt crystallized, generating the two populations of hypersaline and water-rich fluids that were highly reactive to pyrope. The process of fluid-melt interaction envisioned here coupled with models of melt extraction in subduction zones provides an attractive opportunity for the instantaneous ( < 1 Ma) and selective transport of elements between a downgoing slab and the overlying mantle wedge.  相似文献   
95.
96.
The different hypotheses proposed for the creation of the Bay of Biscay are reviewed. New geological and geophysical data collected in the last two years in the Bay and in the Pyrenean domain give new insight into the tectogenesis of the Pyrenees. Geological data of the Pyrenean area provide tight constraints on the hypothesis of formation of the Bay. The most probable hypothesis is an opening by rotation of the Iberian Peninsula around a pole of rotation situated near Paris, which resulted in strike-slip motion along the North Pyrenean fault during the Upper Mesozoic. A progressive westward migration of the pole initiated in the late Cretaceous blocked the motion along the fault and led to the main Eocene tectogenetic Pyrenean phase.  相似文献   
97.
No fluctuations in polarization have been found during a 7 GHz solar burst showing 17 s periodic pulses in intensity. Polarization effects can be produced by the propagation media in the active centre, which are not affected directly by the burst source, but situated more deeply than the observed heights at that microwave frequency.  相似文献   
98.
Solute recycling from irrigation can be described as the process that occurs when the salt load that is extracted from irrigation wells and distributed on the fields is returned to the groundwater below irrigated surfaces by deep percolation. Unless the salt load leaves the system by means of drains or surface runoff, transfer to the groundwater will take place, sooner or later. This can lead to solute accumulation and thus to groundwater degradation, particularly in areas where extraction rates exceed infiltration rates (semi-arid and arid regions). Thus, considerable errors can occur in a predictive solute mass budget if the recycling process is not accounted for in the calculation. A method is proposed which allows direct simulation of solute recycling. The transient solute response at an extraction well is shown to be a superposition of solute mass flux contributions from n recycling cycles and is described as a function of the travel time distribution between a recycling point and a well. This leads to an expression for a transient ‘recycling source’ term in the advection–dispersion equation, which generates the effect of solute recycling. At long times, the ‘recycling source’ is a function of the local capture probability of the irrigation well and the solute mass flux captured by the well from the boundaries. The predicted concentration distribution at steady state reflects the maximum spatial concentration distribution in response to solute recycling and can thus be considered as the solute recycling potential or vulnerability of the entire domain for a given hydraulic setting and exploitation scheme. Simulation of the solute recycling potential is computationally undemanding and can therefore, for instance, be used for optimisation purposes. Also, the proposed method allows transient simulation of solute recycling with any standard flow and transport code.  相似文献   
99.
100.
In this paper, we first discuss the controversial result of the work by Cabanes et al. (Science 294:840–842, 2001), who suggested that the rate of past century sea level rise may have been overestimated, considering the limited and heterogeneous location of historical tide gauges and the high regional variability of thermal expansion which was supposed to dominate the observed sea level. If correct, this conclusion would have solved the problem raised by the IPCC third assessment report [Church et al, Cambridge University Press, Cambridge, pp 881, 2001], namely, the factor two difference between the 20th century observed sea level rise and the computed climatic contributions. However, recent investigations based on new ocean temperature data sets indicate that thermal expansion only explains part (about 0.4 mm/year) of the 1.8 mm/year observed sea level rise of the past few decades. In fact, the Cabanes et al.’s conclusion was incorrect due to a contamination of abnormally high ocean temperature data in the Gulf Stream area that led to an overestimate of thermal expansion in this region. In this paper, we also estimate thermal expansion over the last decade (1993–2003), using a new ocean temperature and salinity database. We compare our result with three other estimates, two being based on global gridded data sets, and one based on an approach similar to that developed here. It is found that the mean rate of thermosteric sea level rise over the past decade is 1.5±0.3 mm/year, i.e. 50% of the observed 3 mm/year by satellite altimetry. For both time spans, past few decades and last decade, a contribution of 1.4 mm/year is not explained by thermal expansion, thus needs to be of water mass origin. Direct estimates of land ice melt for the recent years account for about 1 mm/year sea level rise. Thus, at least for the last decade, we have moved closer to explaining the observed rate of sea level rise than the IPCC third assessment report.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号