首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   11篇
  国内免费   3篇
测绘学   14篇
大气科学   12篇
地球物理   48篇
地质学   135篇
海洋学   6篇
天文学   34篇
综合类   4篇
自然地理   4篇
  2022年   5篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   17篇
  2017年   17篇
  2016年   24篇
  2015年   8篇
  2014年   18篇
  2013年   15篇
  2012年   19篇
  2011年   15篇
  2010年   12篇
  2009年   24篇
  2008年   19篇
  2007年   12篇
  2006年   11篇
  2005年   6篇
  2004年   9篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
排序方式: 共有257条查询结果,搜索用时 15 毫秒
61.
62.
The Malanjkhand copper–molybdenum deposit in the Bhandara Craton, Central India, is hosted by a granite complex which consists of regionally dominant grey granitoid and pink granitoid confined to the mineralized zone. New SHRIMP RG data on zircons from both granite types are inferred to have crystallized during the same magmatic pulse at ca 2.48 Ga. The discrepancy between zircon age and earlier obtained Rb–Sr whole-rock age is attributed to modification of the Rb–Sr system by hydrothermal overprint. Similarity in petrographic features and chemical affinity in combination with identical age strongly indicate that the pink granite is the hydrothermally altered variety (microclinization and silicification) of the grey granite. The spatially associated, main Cu–Mo mineralization event at Malankhand appears to be broadly contemporaneous with and genetically related to the emplacement of the host granitoids at about 2.48 Ga.  相似文献   
63.
A method is established to identify critical earthquake ground motions that are to be used in physical testing or subsequent advanced computational studies to enable seismic performance to be assessed. The ground motion identification procedure consists of: choosing a suitable suite of ground motions and an appropriate intensity measure; selecting a computational tool and modelling the structure accordingly; performing Incremental Dynamic Analysis on a non‐linear model of the structure; interpreting these results into 50th (median) and 90th percentile performance bounds; and identifying the critical ground motions that are close to these defining probabilistic curves at ground motion intensities corresponding to the design basis earthquake and the maximum considered earthquake. An illustrative example of the procedure is given for a reinforced concrete highway bridge pier designed to New Zealand specifications. Pseudodynamic tests and finite element based time history analyses are performed on the pier using three earthquake ground motions identified as: (i) a Design Basis Earthquake (10% probability in 50 years) with 90 percent confidence of non‐exceedance; (ii) a Maximum Considered Event (2% probability in 50 years) representing a median response; and (iii) a Maximum Considered Event representing 90 percent confidence of non‐exceedance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
64.
65.
The western continental margin and the intraplate Narmada-Tapti rifts are primarily covered by Deccan flood basalts. Three-dimensional gravity modeling of +70mgal Bouguer gravity highs extending in the north-south direction along the western continental margin rift indicates the presence of a subsurface high density, mafic-ultramafic type, elongated, roughly ellipsoidal body. It is approximately 12.0 ±1.2 km thick with its upper surface at an approximate depth of 6.0 ±0.6 km, and its average density is {dy2935} kg/m3. Calculated dimension of the high density body in the upper crust is 300 ±30 km in length and 25 ±2.5 to 40 ±4 km in width. Three-dimensional gravity modeling of +10mgal to -30mgal Bouguer gravity highs along the intraplate Narmada-Tapti rift indicates the presence of eight small isolated high density mafic bodies with an average density of {dy2961} kg/m3. These mafic bodies are convex upward and their top surface is estimated at an average depth of 6.5 ±0.6 (between 6 and 8km). These isolated mafic bodies have an average length of 23.8 ±2.4km and width of 15.9 ±1.5km. Estimated average thickness of these mafic bodies is 12.4±1.2km. The difference in shape, length and width of these high density mafic bodies along the western continental margin and the intraplate Narmada-Tapti rifts suggests that the migration and concentration of high density magma in the upper lithosphere was much more dominant along the western continental margin rift. Based on the three-dimensional gravity modeling, it is conjectured that the emplacement of large, ellipsoidal high density mafic bodies along the western continental margin and small, isolated mafic bodies along the Narmada-Tapti rift are related to lineament-reactivation and subsequent rifting due to interaction of hot mantle plume with the lithospheric weaknesses (lineaments) along the path of Indian plate motion over the Réunion hotspot. Mafic bodies formed in the upper lithosphere as magma chambers along the western continental margin and the intraplate Narmada-Tapti rifts at estimated depths between 6 and 8 km from the surface (consistent with geological, petrological and geochemical models) appear to be the major reservoirs for Deccan flood basalt volcanism at approximately 65 Ma.  相似文献   
66.
This paper describes the blind prediction carried out to simulate the response of a thin reinforced concrete wall tested under uni-directional (in-plane) quasi-static reverse cyclic loading. The specimen was a singly reinforced T-shaped wall panel with a shear-span ratio of 3.7. The response of the test specimen was simulated prior to the release of test results using a finite element model which had already been verified for its capabilities in capturing different failure patterns of rectangular walls, particularly out-of-plane instability. The numerical model predicted a flexural dominated response for the specimen accompanied by considerable out-of-plane deformations. The blind prediction report, submitted in advance to the principal investigator of the experimental campaign, included lateral load-top displacement response of the specimen, maximum out-of-plane deformation corresponding to each drift level, evolution of out-of-plane displacements throughout in-plane loading, response of the longitudinal reinforcement at the section exhibiting the maximum out-of-plane deformation, and von Mises as well as reinforcement stress distribution at some key points of the wall response. Furthermore, a parametric study was carried out addressing the effects of shear-span ratio, reinforcement eccentricity and axial load ratio on the wall response. Results of the numerical simulation that had been included in the blind prediction report have been compared with the experimental measurements indicating that the evolution of the out-of-plane deformation was well captured by the model.  相似文献   
67.
This paper proposes an enhancement to the current strength and confinement‐based design of transverse reinforcement in rectangular and circular reinforced concrete members to ensure that the flexural strength of reinforced concrete sections does not degrade excessively due to buckling of longitudinal bars until the desired level of plastic deformation is achieved. Antibuckling design criteria are developed based on a popular bar buckling model that uses a bar buckling parameter (combining the bar diameter, yield strength, and buckling length) to solely describe the bar buckling behavior. The value of buckling parameter that limits the buckling‐induced stress loss to 15% in compression bars at the strain corresponding to the design ductility is determined. For a bar of known diameter and yield strength, the maximum allowable buckling length can then be determined, which serves as the maximum limit for the tie/stirrup/hoop spacing. Lateral stiffness required to restrain the buckling tendency of main bars at the locations of the ties/stirrups/hoops depends on the flexural rigidity of the main bars and the buckling length (equal to or multiple of tie/hoop/stirrup spacing), whereas the antibuckling stiffness (ie, resistance) provided by the ties/stirrups/hoops depends on their size, number, and arrangement. Using the above concept, design recommendations for the amount, arrangement, and spacing of rectangular and circular ties/stirrups/hoops are then established to ensure that the antibuckling stiffness of the provided transverse reinforcement is greater than the stiffness required to restrain the buckling‐prone main bars. Key aspects of the developed method are verified using experimental tests from literature.  相似文献   
68.
In this paper we focused on understanding the isostatic compensation of the Ninetyeast Ridge in the overall context of the Bay of Bengal oceanic lithosphere and the interaction of the ridge system with the north Andaman subduction zone from north of 7–18°N. This region is characterized by the initial interaction of the Kerguelen hotspot with the Bay of Bengal oceanic lithosphere. We used satellite altimeter-derived marine geoid, as it should comprehensively reflect the compensations caused by large spatial wavelength dominated deeper anomaly sources in a hotspot affected lithospheric load like the Ninetyeast Ridge. Our analyses of the geoid-to-topography ratio (GTR), residual geoid, gravity-to-topographic kernel and upward continuation of anomalies show the existence of two different types of source compensation bodies beneath the northern (12–18°N) and southern (7–12°N) Ninetyeast Ridge. In the northern region, the geoid to topography ratio varies from 0.63 ± 0.05 to 0.44 ± 0.03, while in the southern region it ranges from 1.34 ± 0.09 to 1.31 ± 0.07 which resulted in a north to south increase in the apparent compensation depth from ~9 to 28 km. The presence of a shallow Moho, low GTR, broader gravity to topography kernel and the absence of a ridge anomaly from the mantle density dominated upward continued anomaly at z = 300 km indicates that at the northern segment the underplated low density crustal melt is the dominant isostatic compensating body. However, at the southern ridge segment the high GTR, strong gravity-to-topography kernel and the subsistence of the anomaly at long wavelengths, even at z = 300 km represents the existence of large volumes of hotspot related underplated dense material as the source of compensation. The proximity of the dense source compensating body of the southern Ninetyeast Ridge to the Andaman subduction zone affected the regional mantle driven density gradient flow, as observed from the z = 300 km continued gravity anomaly. The existence of a southern Ninetyeast Ridge in such a transpressional regime has caused the formation of a forearc sliver at its eastern flank, which is a major crustal deformational structure developed as a result of ridge-trench collision.  相似文献   
69.
Cosmic-ray intensity data recorded with the ground-based neutron monitor at Deep River have been investigated taking into account the associated interplanetary magnetic field and solar-wind plasma data during 1981 – 1994. A large number of days having abnormally high or low amplitudes for five or more successive days as compared to the annual average amplitude of diurnal anisotropy have been taken as high- or low-amplitude anisotropic wave-train events. The amplitude of the diurnal anisotropy of these events is found to increase on days with a magnetic cloud as compared to the days prior to the event, and it is found to decrease during the later period of the event as the cloud passes the Earth. The high-speed solar-wind streams do not play any significant role in causing these types of events. However, corotating solar-wind streams produce significant deviations in cosmic-ray intensity during high- and low-amplitude events. The interplanetary disturbances (magnetic clouds) are also effective in producing cosmic-ray decreases. Hα solar flares have a good positive correlation with both the amplitude and direction of the anisotropy for high-amplitude events, while the principal magnetic storms have a good positive correlation with both amplitude and direction of the anisotropy for low-amplitude events. The source responsible for these unusual anisotropic wave trains in cosmic rays has been proposed.  相似文献   
70.
Large charnockite massifs occur in some of the Precambrian high-grade terrains like the southern Indian granulite terrain. The Cardamom Hill charnockite massif from the Madurai Block, southern India, consists of an intermediate type and silicic type, with the intermediate type showing similarities to high-Ba−Sr granitoids with low K2O/Na2O ratios and the silicic type showing similarities to high-Ba–Sr granitoids with high K2O/Na2O ratios. Within the constraints imposed by near basaltic composition of the most mafic samples and their relatively high concentrations of both compatible and incompatible elements, comparison with recent experimental studies on various source compositions, and trace- and rare-earth-element modeling, the distinctive features of the intermediate charnockites can be best explained in terms of assimilation–fractional crystallization (AFC) models involving interaction between a mantle-derived basaltic magma and lower crustal materials. Silicic charnockites on the other hand are high temperature melts of moderately hydrous basaltic magmas. A two-stage model which involves an initial partial melting of hydrous basaltic magma and later fractionation explains the geochemical features of the silicic charnockites, with the fractionation stage most probably an open system AFC. It is suggested that for massifs showing spatial association of intermediate and silicic charnockites, a model taking into account their compositional difference in terms of the effect of variations in the conditions (e.g., temperature, water fugacity) that prevailed, can account for plausible petrogenetic scenarios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号