首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  国内免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   12篇
地质学   16篇
海洋学   1篇
天文学   6篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   8篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
21.
Heavy metals are toxic elements that have hazardous effect on the environment. They cause soil pollution as a result of their toxicity, potential reactivity, and mobility in soils. There are so many methods for the measurement of heavy metal concentrations in soils and aquatic systems. The traditional methods used for detecting heavy metal distribution in soil involve laboratory analysis and raster sampling. Both of them are expensive and time-consuming for large areas. Remote sensing techniques are used for obtaining the earth’s surface information, and these techniques have been used in the investigations of heavy metal distributions in preliminary analysis of soils as a rapid method. Today, near-infrared reflectance spectroscopy (NIRS) of soil characteristics has been of interest as a significant object. The present investigation is focused on the detection of heavy metals in contaminated soils by the application of reflectance spectroscopy in the spectral range of 350 to 2500 nm. This study also discusses the circumstances of the applied current methods for the detection and estimation of arsenic (As), cadmium (Cd), nickel (Ni), and lead (Pb) in contaminated agricultural soils. In the first part of laboratory spectroscopy, estimations were done using heavy metal reflectance spectroscopy and partial least square regression (PLSR) approaches, while in the second part, the heavy metal estimations were done using soil organic carbon reflectance spectroscopy through the PLSR approaches. Similar to the tasks above, estimations of As, Cd, Ni, and Pb by using Landsat 8 images were done in the forms of direct and indirect methods and the distribution of heavy metals in the study area was determined. Finally, the results obtained using direct and indirect methods were compared with the wet chemical measurements of heavy metals and organic carbon. It was found that although the direct detection of heavy metals using the images of Landsat 8 produced more accurate results than the indirect detections, the results obtained from laboratory spectroscopy corresponded more with the results from atomic adsorption spectroscopy. On the other hand, based on the fact that the soil has a complex content, the use of nonlinear methods, such as artificial neural networks in predicting soil heavy metal contents, could be regarded as a trusted method.  相似文献   
22.
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.  相似文献   
23.
24.
Geotechnical and Geological Engineering - Several physical parameters and anisotropy related to rock textural arrangements, schistosity and weakness planes such as cracks and joints affect the...  相似文献   
25.
The crucial advantages of a 3-D seismic survey are the proper migration of the reflection points and the more accurate study on the structural and stratigraphic targets, reservoir characterization, and joint study. In this article we will focus on Pardis Project in southwest of Iran where no 3-D seismic survey has ever been carried out. The local geological information, previous 2-D seismic, VSP data, and interval velocity information obtained from check shots were taken into consideration to determine the requirements of the survey. The objective is to adequately sample the primary and secondary targets at the depth of 1,200 and 5,000 m, respectively. On the base of the logic dominating a genetic algorithm, the best operational layout was offered to satisfy the geophysical requirements looking forward to satisfy financial constraints. Using Genetic Algorithm Toolbox in MATLAB, we could formulate a mathematical constrained optimization problem. Applying this technique we derived nominal designs which are needed to be evaluated to make sure how well they could image the targets.  相似文献   
26.
Laboratory measurements are required to study geophysical properties of the subsurface because of lacking direct observation of Earth’s crust. In this research, compressional (P) and shear (S) wave velocity measurements have been conducted on cylindrical specimens of Quartz-micaschist cored using rock blocks taken from the zinc and lead Angouran mine, Zanjan, northwest of Iran. Cylindrical rock specimens were prepared from the blocks by coring in 0°, 30°, 45°, 60°, and 90° into the foliation direction. P- and S-wave velocities were measured along the cylindrical specimens with different foliation orientations. Percent variations of the P- and S-wave velocities (Thomsen’s anisotropic parameters ε and γ) and constant dynamic modulus of test results have been determined. Percent variations of the P-wave velocity (ε) increase with an increase of the foliation angle with respect to the propagating waves direction by a parabolic function as it shows P-wave velocity differences up to a maximum value of 50 %. Thomsen’s anisotropic parameter of γ has also the same function with the foliation angle. Meanwhile, foliation orientation has a much greater influence on ε than γ for foliation angle from 45° to 90° as \( \frac{\varepsilon }{\gamma } \) ratio increases with an increase of foliation angle. Values of dynamic elastic modulus (E), Poisson’s ratio (ν), shear modulus (μ), bulk modulus (K), and Lamé’s constant (λ) increase with the increase of foliation angle with the parabolic function. The results show that dynamic elastic modulus, Poisson’s ratio, shear modulus, bulk modulus, and Lamé’s constant have anisotropic behavior in relation with the foliation orientation.  相似文献   
27.
Petrophysical properties have played an important and definitive role in the study of oil and gas reservoirs, necessitating that diverse kinds of information are used to infer these properties. In this study, the seismic data related to the Hendijan oil field were utilised, along with the available logs of 7 wells of this field, in order to use the extracted relationships between seismic attributes and the values of the shale volume in the wells to estimate the shale volume in wells intervals. After the overall survey of data, a seismic line was selected and seismic inversion methods (model-based, band limited and sparse spike inversion) were applied to it. Amongst all of these techniques, the model-based method presented the better results. By using seismic attributes and artificial neural networks, the shale volume was then estimated using three types of neural networks, namely the probabilistic neural network (PNN), multi-layer feed-forward network (MLFN) and radial basic function network (RBFN).  相似文献   
28.
A simple and selective solid phase extraction procedure for the trace analysis of iron(III) in water samples has been developed. Sodium dodecyl sulfate coated alumina, modified with polyphenolic compounds (extracted from black tea) was used for the extraction and preconcentration of iron(III) from water samples before determination by flame atomic absorption spectrometry. Due to the complexation reaction between iron(III) and polyphenol compounds, iron(III) was quantitatively extracted on the proposed sorbent and then eluted by 2.0 mL of HCl (1.0 mol/L). The effects of extraction parameters, such as pH and volume of sample solution, amount of polyphenolic compounds, type of eluting agent and the effect of interfering ions on the extraction of iron(III), were investigated. It was found that the proposed method had a good linear range (15.0–100.0 μg/L) and a low detection limit (10.0 μg/L). The procedure was successfully applied for iron determination in drinking water samples.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号