首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   29篇
  国内免费   3篇
测绘学   8篇
大气科学   25篇
地球物理   85篇
地质学   107篇
海洋学   35篇
天文学   34篇
综合类   4篇
自然地理   57篇
  2023年   7篇
  2022年   3篇
  2021年   10篇
  2020年   14篇
  2019年   24篇
  2018年   19篇
  2017年   11篇
  2016年   21篇
  2015年   10篇
  2014年   13篇
  2013年   18篇
  2012年   17篇
  2011年   22篇
  2010年   16篇
  2009年   18篇
  2008年   23篇
  2007年   19篇
  2006年   11篇
  2005年   10篇
  2004年   9篇
  2003年   11篇
  2002年   13篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1971年   2篇
排序方式: 共有355条查询结果,搜索用时 31 毫秒
151.
In environments with shallow ground water elevation, small changes in the water table can cause significant variations in recharge and evapotranspiration fluxes. Particularly, where ground water is close to the soil surface, both recharge and evapotranspiration are regulated by a thin unsaturated zone and, for accuracy, must be represented using nonconstant and often nonlinear relationships. The most commonly used ground water flow model today, MODFLOW, was originally designed with a modular structure with independent packages representing recharge and evaporation processes. Systems with shallow ground water, however, may be better represented using either a recharge function that varies with ground water depth or a continuous recharge and evapotranspiration function that is dependent on depth to water table. In situations where the boundaries between recharging and nonrecharging cells change with time, such as near a seepage zone, a continuous ground water flux relationship allows recharge rates to change with depth rather than having to calculate them at each stress period. This research article describes the modification of the MODFLOW 2000 recharge and segmented evapotranspiration packages into a continuous recharge-discharge function that allows ground water flux to be represented as a continuous process, dependent on head. The modifications were then used to model long-term recharge and evapotranspiration processes on a saline, semiarid floodplain in order to understand spatial patterns of salinization, and an overview of this process is given.  相似文献   
152.
Sediment grains in a bedrock‐alluvial river will be deposited within or adjacent to a sediment patch, or as isolated grains on the bedrock surface. Previous analysis of grain geometry has demonstrated that these arrangements produce significant differences in grain entrainment shear stress. However, this analysis neglected potential interactions between the sediment patches, local hydraulics and grain entrainment. We present a series of flume experiments that measure the influence of sediment patches on grain entrainment. The flume had a planar bed with roughness that was much smaller than the diameters of the mobile grains. In each experiment sediment was added either as individual grains or as a single sediment pulse. Flow was then increased until the sediment was entrained. Analysis of the experiments demonstrates that: (1) for individual grains, coarse grains are entrained at a higher discharge than fine grains; (2) once sediment patches are present, the different in entrainment discharge between coarse and fine grains is greatly reduced; (3) the sheltering effect of patches also increases the entrainment discharge of isolated grains; (4) entire sediment patches break‐up and are eroded quickly, rather than through progressive grain‐by‐grain erosion; (5) as discharge increases there is some tendency for patches to become more elongate and flow‐aligned, and more randomly distributed across the bed. One implication of this research is that the critical shear stress in bedrock‐alluvial channels will be a function of the extent of the sediment cover. Another is that the influence of sediment patches equalizes critical shear stresses between different grain sizes and grain locations, meaning that these factors may not need to be accounted for. Further research is needed to quantify interactions between sediment patches, grain entrainment and local hydraulics on rougher bedrock surfaces, and under different types of sediment supply. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
153.
Over the past decade, British Columbia (BC), has experienced the largest mountain pine beetle (MPB) outbreak on record. This study used the eddy‐covariance (EC) technique to examine the impact of the MPB attack on evapotranspiration (E) and associated canopy characteristics of two lodgepole pine stands with secondary structure (trees, saplings and seedlings surviving the attack) located in central BC. MPB‐06, an 85‐year‐old almost pure stand of pine trees, was first attacked in 2006, and by 2010, ~80% of the trees had been killed. MPB‐03, a 110‐year‐old stand with an overstory consisting of over 90% pine and a developed sub‐canopy, was first attacked in 2003 and by 2007 had > 95% pine canopy mortality. EC measurements began in August 2006 at MPB‐06 and in March 2007 at MPB‐03, and continued for four years. Annual total E ranged from 226 mm to 237 mm at MPB‐06, and from 280 to 297 mm at MPB‐03, showing relatively little year‐to‐year change at both sites over the four years. Increased E from the accelerated growth of the surviving vegetation (secondary structure, shrubs and herbs) compensated for reduction in E due to the death of the overstory. Monthly average daytime canopy conductance, the Priestley–Taylor (α), and the canopy–atmosphere decoupling coefficient (Ω) steadily increased during the growing season reaching approximate maximum values of 5 mm s?1, 0.75 and 0.12, respectively. Potential evapotranspiration was approximated using a vapour pressure deficit‐dependent α obtained at high soil water content. Calculated water deficits indicated some water‐supply limitation to the surviving trees and understory at both sites. Rates of root zone drainage during the growing season were low relative to precipitation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
154.
155.
Between 1996 and 2001 an experimental set up in a chaparral community near San Diego, CA, examined various plant and ecosystem responses to CO2 concentrations ranging from 250 to 750 μl l− 1. These experiments indicated a significant increase in soil C sequestration as CO2 rose above the ambient levels. In 2003, two years after the cessation of the CO2 treatments, we returned to this site to examine soil C dynamics with a particular emphasis on stability of specific pools of C. We found that in as little as two years, C content in the surface soils (0–15 cm) of previously CO2 enriched plots had dropped to levels below those of the ambient and pretreatment soils. In contrast, C retained in response to CO2 enrichment was more durable in the deeper soil layers (> 25 cm deep) where both organic and inorganic C were on average 26% and 55% greater, respectively, than C content of ambient plots. Using stable isotope tracers, we found that treatment C represented 25% of total soil C and contributed to 55% of soil CO2 efflux, suggesting that most of treatment C is readily accessible to decomposers. We also found that, C present before CO2 fumigation was decomposed at a faster rate in the plots that were exposed to elevated CO2 than in those exposed to ambient CO2 levels. To our knowledge, this is the first report that allows for a detail accounting of soil C after ceasing CO2 treatments. Our study provides a unique insight to how stable the accrued soil C is as CO2 increases in the atmosphere.  相似文献   
156.
Constraining the speed of sea level rise at the start of an interglacial is important to understanding the size of the ‘window of opportunity’ available for hominin migration. This is particularly important during the last interglacial when there is no evidence for significant hominin occupation anywhere in Britain. There are very few finer grained fossiliferous sequences in the Channel region that can be used to constrain sea level rise and they are preserved only to the north of the Channel, in England. Of these, the sequence at Stone Point SSSI is by far the most complete. Data from this sequence has been previously reported, and discussed at a Quaternary Research Association Field Meeting, where a number of further questions were raised that necessitated further data generation. In this paper, we report new data from this sequence – thin section analysis, isotopic determinations on ostracod shells, new Optical Stimulated Luminescence ages and Amino Acid Recem analyses. These show early sea level rise in this sequence, starting during the pre-temperate vegetation zone IpI, but no early warming. The implications of this almost certainly last interglacial sequence for the human colonisation of Britain and our understanding of the stratigraphic relationship of interglacial estuarine deposits with their related fluvial terrace sequences is explored.  相似文献   
157.
A review is provided of the current and emerging methods for modelling catchment-scale recharge and evapotranspiration (ET) in shallow groundwater systems. With increasing availability of data, such as remotely sensed reflectance and land-surface temperature data, it is now possible to model groundwater recharge and ET with more physically realistic complexity and greater levels of confidence. The conceptual representation of recharge and ET in groundwater models is critical in areas with shallow groundwater. The depth dependence of recharge and vegetation water-use feedback requires additional calibration to fluxes as well as heads. Explicit definition of gross recharge vs. net recharge, and groundwater ET vs. unsaturated zone ET, in preparing model inputs and reporting model results is necessary to avoid double accounting in the water balance. Methods for modelling recharge and ET include (1) use of simple surface boundary conditions for groundwater flow models, (2) coupling saturated groundwater models with one-dimensional unsaturated-zone models, and (3) more complex fully-coupled surface-unsaturated-saturated conceptualisations. Model emulation provides a means for including complex model behaviours with lower computational effort. A precise ET surface input is essential for accurate model outputs, and the model conceptualisation depends on the spatial and temporal scales under investigation. Using remote sensing information for recharge and ET inputs in model calibration or in model–data fusion is an area for future research development. Improved use of uncertainty analysis to provide probability bounds for groundwater model outputs, understanding model sensitivity and parameter dependence, and guidance for further field-data acquisition are also areas for future research.  相似文献   
158.
Catchment sediment budget models are used to predict the location and rates of bank erosion in tropical catchments draining to the Great Barrier Reef lagoon, yet the reliability of these predictions has not been tested due to a lack of measured bank erosion data. This paper presents the results of a 3 year field study examining bank erosion and channel change on the Daintree River, Australia. Three different methods were employed: (1) erosion pins were used to assess the influence of riparian vegetation on bank erosion, (2) bench‐marked cross‐sections were used to evaluate annual changes in channel width and (3) historical aerial photos were used to place the short term data into a longer temporal perspective of channel change (1972–2000). The erosion pin data suggest that the mean erosion rate of banks with riparian vegetation is 6·5 times (or 85%) lower than that of banks without riparian vegetation. The changes measured from cross‐section surveys suggest that channel width has increased by an average of 0·74 (±0·47) m a?1 over the study period (or ~0·8% yr?1). The aerial photo results suggest that over the last 30 years the Daintree River has undergone channel contraction of the order of 0·25 m a?1. The cross‐section data were compared against modelled SedNet bank erosion rates, and it was found that the model underestimated bank erosion and was unable to represent the variable erosion and accretion processes that were observed in the field data. The reach averaged bank erosion rates were improved by the inclusion of locally derived bed slope and discharge estimates; however, the results suggest that it will be difficult for catchment scale sediment budget models to ever accurately predict the location and rate of bank erosion due to the variation in bank erosion rates in both space and time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
159.
160.
The Mascota volcanic field is located in the Jalisco Block of western Mexico, where the Rivera Plate subducts beneath the North American Plate. It spans an area of ∼ 2000 km2 and contains ∼ 87 small cones and lava flows of minette, absarokite, basic hornblende lamprophyre, basaltic andesite, and andesite. There are no contemporary dacite or rhyolite lavas. New 40Ar/39Ar ages are presented for 35 samples, which are combined with nine dates from the literature to document the eruptive history of this volcanic field. The oldest lavas (2.4 to 0.5 Ma) are found in the southern part of the field area, whereas the youngest lavas (predominantly < 0.5 Ma) are found in the northern portion. On the basis of these ages, field mapping, and the use of ortho aerial photographs and digital elevation models, it is estimated that a combined volume of 6.8 ± 3.1 km3 erupted in the last 2.4 Myr, which leads to an average eruption rate of ∼ 0.003 km3/kyr, and an average volume per eruptive unit of < 0.1 km3. The dominant lava type is andesite (2.1 ± 0.9 km3), followed by absarokite (1.6 ± 0.8 km3), basaltic andesite (1.2 ± 0.5 km3), basic hornblende lamprophyre (1.0 ± 0.4 km3), and minette (0.9 ± 0.5 km3). Thus, the medium-K andesite and basaltic andesite comprise approximately half (49%) of the erupted magma, with twice as much andesite as basaltic andesite, and they occur in close spatial and temporal association with the highly potassic, lamprophyric lavas. There is no time progression to the type of magma erupted. A wide variety of evidence indicate that the high-MgO (8–9 wt.% ) basaltic andesites (52–53% wt.% SiO2) were formed by H2O flux melting of the asthenopheric arc mantle wedge, whereas the mafic minettes and absarokites were formed by partial melting (induced by thermal erosion) of depleted lithospheric mantle containing phlogopite-bearing veins. There is only limited differentiation of the potassic magmas, with none more evolved than 55.4 wt.% SiO2 and 4.4 wt.% MgO. This may be attributable to rapid crystallization of the mantle-derived melts in the deep crust, owing to their low volumes. Thus, the andesites (58–63 wt.% SiO2) are notable for being both the most voluminous and the most evolved of all lava types in the Mascota volcanic field, which is not consistent with their extraction from extensively crystallized (60–70%), low-volume intrusions. Instead, the evidence supports the origin of the andesites by partial melting of amphibolitized, mafic lower crust, driven by the emplacement of the minettes, absarokites, and the high-Mg basaltic andesites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号