首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7173篇
  免费   225篇
  国内免费   66篇
测绘学   173篇
大气科学   615篇
地球物理   1433篇
地质学   2283篇
海洋学   690篇
天文学   1518篇
综合类   12篇
自然地理   740篇
  2021年   60篇
  2020年   76篇
  2019年   101篇
  2018年   113篇
  2017年   107篇
  2016年   154篇
  2015年   153篇
  2014年   155篇
  2013年   386篇
  2012年   209篇
  2011年   323篇
  2010年   257篇
  2009年   398篇
  2008年   286篇
  2007年   281篇
  2006年   257篇
  2005年   231篇
  2004年   241篇
  2003年   235篇
  2002年   229篇
  2001年   156篇
  2000年   173篇
  1999年   157篇
  1998年   157篇
  1997年   99篇
  1996年   112篇
  1995年   103篇
  1994年   102篇
  1993年   91篇
  1992年   82篇
  1991年   101篇
  1990年   81篇
  1989年   83篇
  1988年   66篇
  1987年   105篇
  1986年   73篇
  1985年   108篇
  1984年   131篇
  1983年   109篇
  1982年   99篇
  1981年   113篇
  1980年   102篇
  1979年   81篇
  1978年   93篇
  1977年   84篇
  1976年   80篇
  1975年   70篇
  1974年   53篇
  1973年   56篇
  1971年   48篇
排序方式: 共有7464条查询结果,搜索用时 31 毫秒
951.
The High-Resolution Coronal Imager (Hi-C) was flown on a NASA sounding rocket on 11 July 2012. The goal of the Hi-C mission was to obtain high-resolution (≈?0.3?–?0.4′′), high-cadence (≈?5 seconds) images of a solar active region to investigate the dynamics of solar coronal structures at small spatial scales. The instrument consists of a normal-incidence telescope with the optics coated with multilayers to reflect a narrow wavelength range around 19.3 nm (including the Fe xii 19.5-nm spectral line) and a 4096×4096 camera with a plate scale of 0.1′′?pixel?1. The target of the Hi-C rocket flight was Active Region 11520. Hi-C obtained 37 full-frame images and 86 partial-frame images during the rocket flight. Analysis of the Hi-C data indicates the corona is structured on scales smaller than currently resolved by existing satellite missions.  相似文献   
952.
953.
954.
Peat cores from ombrotrophic bogs have been used as a valuable archive to study environmental change for over a century. Much of this focus on the peat record has been on biological proxies of environmental change, such as pollen and peat-forming macrofossils, but there is growing interest in the geochemical record to study environmental changes. Several studies of long-term peat records in Europe have reconstructed past changes in atmospheric lead pollution, for example, and the general cohesiveness of the results and their agreement with known historical trends in metal production exemplify the best potential of peat geochemistry as an environmental archive. Based on the success with lead, a current emphasis in peat reconstructions is to assess the record of past mercury deposition and results thus far show generally consistent trends, e.g., a pre-anthropogenic mercury accumulation rate of about 0.5–1.5 μg Hg m− 2 year− 1. Despite this general consistency there is increasing concern that there may be diagenetic effects on the quantitative record of some metals, which can be inferred based on a strong relationship between mercury and other organically bound elements and proxies for peat decomposition (C/N ratio). However, it is possible that changes in decomposition and the alteration of some metal records could provide climatic information. A few recent studies show that closer examination of the geochemical matrix, in some cases along with biological proxies, can provide valuable information on landscape changes and climate; for example, partitioning metals into different weight fractions and source regions can be applied to climate studies. The best interpretations of the peat geochemical record in the context of environmental and climate change will likely come when geochemical and biological records are considered simultaneously.  相似文献   
955.
Accelerometer measurements made by Spirit and Opportunity during their entries through the martian atmosphere are reported. Vertical profiles of atmospheric density, pressure, and temperature with sub-km vertical resolution were obtained using these data between 10 and 100 km. Spirit's temperature profile is ∼10 K warmer than Opportunity's between 20 and 80 km. Unlike all other martian entry profiles, Spirit's temperature profile does not contain any large amplitude, long wavelength oscillations and is nearly isothermal below 30 km. Opportunity's temperature profile contains a strong inversion between 8 and 12 km. A moderate dust storm, which occurred on Mars shortly before these two atmospheric entries, may account for some of the differences between the two profiles. The poorly known angle of attack and unknown wind velocity may cause the temperature profiles to contain errors of tens of Kelvin at 10 km, but these errors would be an order of magnitude smaller above 30 km. On broad scales, the two profiles are consistent with Mars Global Surveyor Thermal Emission Spectrometer (TES) pressure/temperature profiles. Differences exist on smaller scales, particularly associated with the near-isothermal portion of Spirit's profile and the temperature inversion in Opportunity's profile.  相似文献   
956.
Krucker  Säm  Christe  Steven  Lin  R.P.  Hurford  Gordon J.  Schwartz  Richard A. 《Solar physics》2002,210(1-2):445-456
The excellent sensitivity, spectral and spatial resolution, and energy coverage down to 3 keV provided by the Reuven Ramaty High-Energy Solar Spectroscopic Imager mission (RHESSI) allows for the first time the detailed study of the locations and the spectra of solar microflares down to 3 keV. During a one-hour quiet interval (GOES soft X-ray level around B6) on 2 May, 1:40–2:40 UT, at least 7 microflares occurred with the largest peaking at A6 GOES level. The microflares are found to come from 4 different active regions including one behind the west limb. At 7′′ resolution, some events show elongated sources, while others are unresolved point sources. In the impulsive phase of the microflares, the spectra can generally be fitted better with a thermal model plus power law above ∼ 6–7 keV than with a thermal only. The decay phase sometimes can be fitted with a thermal only, but in some events, power-law emission is detected late in the event indicating particle acceleration after the thermal peak of the event. The behind-the-limb microflare shows thermal emissions only, suggesting that the non-thermal power law emission originates lower, in footpoints that are occulted. The power-law fits extend to below 7 keV with exponents between −5 and −8, and imply a total non-thermal electron energy content between 1026–1027 erg. Except for the fact that the power-law indices are steeper than what is generally found in regular flares, the investigated microflares show characteristics similar to large flares. Since the total energy in non-thermal electrons is very sensitive to the value of the power law and the energy cutoff, these observations will give us better estimates of the total energy input into the corona. (Note that color versions of figures are on the accompanying CD-ROM.) Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022404512780  相似文献   
957.
Abstract— Four parameters of low‐field magnetic susceptibility (bulk value, frequency dependence, degree of anisotropy, and ellipsoid shape) have been determined for 321 stony meteorites from the National Collection of Canada. These parameters provide a basis for rapid, non‐destructive, and accurate meteorite classification as each meteorite class tends to have a distinct range of values. Chondrites show a clear trend of increasing bulk susceptibility from LL to L to H to E within the 3.6 to 5.6 logχ (in 10−9 m3/kg) range, reflecting increasing Fe‐Ni metal and Fe‐Ni sulfide content. Achondrite values range in logχ from 2.4 to 4.7 and primitive achondrites from 4.2 to 5.7. Frequency dependence is observed, using 19,000 Hz and 825 Hz, with variations in strength among meteorite classes and individual specimen dependence ranging from 1–25.6%. Degrees of anisotropy range from 1 to 53% with both oblate and prolate ellipsoids present. The aubrite class is marked by high degrees of anisotropy, low bulk magnetic susceptibility, and prolate fabric. Camel Donga is set apart from other eucrites, marked by higher bulk susceptibility, degree of anisotropy, and magnitude of oblate ellipsoid shape. The Shergotty, Nakhla, and Chassigny (SNC) meteorites show subclass distinction using frequency dependence and Chassigny is set apart with a relatively strong oblate fabric. The presence of both strong oblate and prolate fabrics among and within meteorite classes of chondritic and achondritic material points to a complex, multi‐mechanism origin for anisotropy, more so than previously thought, and likely dominated by impact processes in the later stages of stony parent body formation.  相似文献   
958.
Abstract— The occurrence of shock metamorphosed quartz is the most common petrographic criterion for the identification of terrestrial impact structures and lithologies. Its utility is due to its almost ubiquitous occurrence in terrestrial rocks, its overall stability and the fact that a variety of shock metamorphic effects, occurring over a range of shock pressures, have been well documented. These shock effects have been generally duplicated in shock recovery experiments and, thus, serve as shock pressure barometers. After reviewing the general character of shock effects in quartz, the differences between experimental and natural shock events and their potential effects on the shock metamorphism of quartz are explored. The short pulse lengths in experiments may account for the difficulty in synthesizing the high-pressure polymorphs, coesite and stishovite, compared to natural occurrences. In addition, post-shock thermal effects are possible in natural events, which can affect shock altered physical properties, such as refractive index, and cause annealing of shock damage and recrystallization. The orientations of planar microstructures, however, are unaffected by post-impact thermal events, except if quartz is recrystallized, and provide the best natural shock barometer in terms of utility and occurrence. The nature of planar microstructures, particularly planar deformation features (PDFs), is discussed in some detail and a scheme of variations in orientations with shock pressure is provided. The effect of post-impact events on PDFs is generally limited to annealing of the original glass lamellae to produce decorated PDFs, resulting from the exsolution of dissolved water during recrystallization. Basal (0001) PDFs differ from other PDF orientations in that they are multiple, mechanical Brazil twins, which are difficult to detect if not partially annealed and decorated. The occurrence and significance of shock metamorphosed quartz and its other phases (namely, coesite, stishovite, diaplectic glass and lechatelierite) are discussed for terrestrial impact structures in both crystalline (non-porous) and sedimentary (porous) targets. The bulk of past studies have dealt with crystalline targets, where variations in recorded shock pressure in quartz have been used to constrain aspects of the cratering process and to estimate crater dimensions at eroded structures. In sedimentary targets, the effect of pore space results in an inhomogeneous distribution in recorded shock pressure and temperature, which requires a different classification scheme for the variation of recorded shock compared to that in crystalline targets. This is discussed, along with examples of variations in the relative abundances of planar microstructures and their orientations, which are attributed to textural variations in sedimentary target rocks. Examples of the shock metamorphism of quartz in distal ejecta, such as at the K/T boundary, and from nuclear explosions are illustrated and are equivalent to that of known impact structures, except with respect to characteristics that are due to long-term, post-shock thermal effects. Finally, the differences between the deformation and phase transformation of quartz by shock and by endogenic, tectonic and volcanic processes are discussed. We confirm previous conclusions that they are completely dissimilar in character, due to the vastly different physical conditions and time scales typical for shock events, compared to tectonic and volcanic events. Well-characterized and documented shock effects in quartz are unequivocal indicators of impact in the natural environment.  相似文献   
959.
Abstract— Zag is an H3‐6 chondrite regolith breccia within which we have studied 14 halite grains ≤3 mm. The purity of the associated NaCl‐H2O brine is implied by freezing characteristics of fluid inclusions in the halite and EPMA analyses together with a lack of other evaporite‐like phases in the Zag H3–6 component. This is inconsistent with multi‐stage evolution of the fluid involving scavenging of cations in the Zag region of the parent body. We suggest that the halite grains are clastic and did not crystallize in situ. Halite and water‐soluble extracts from Zag have light Cl isotopic compositions, δ37Cl = ?1.4 to ?2.8%. Previously reported bulk carbonaceous chondrite values are approximately δ37Cl = +3 to +4%. This difference is too great to be the result of fractionation during evaporation, and instead, we suggest that Cl isotopes in chondrites are fractionated between a light reservoir associated with fluids and a heavier reservoir associated with higher temperature phases such as phosphates and silicates. Extraterrestrial carbon released at 600 °C from the H3–4 matrix has δ13C = ?20%, consistent with poorly graphitized material being introduced into the matrix rather than indigenous carbonate derived from a brine. We have also examined 28 other H chondrite falls to ascertain how widespread halite or evaporite‐like mineral assemblages are in ordinary chondrites. We did not find any more to add to Zag (H3‐6) and Monahans (H5), which suggests that such highly soluble phases were not usually preserved on the parent bodies.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号