首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   333篇
  免费   6篇
  国内免费   5篇
测绘学   6篇
大气科学   39篇
地球物理   114篇
地质学   121篇
海洋学   9篇
天文学   38篇
综合类   3篇
自然地理   14篇
  2022年   4篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   4篇
  2016年   8篇
  2015年   4篇
  2014年   18篇
  2013年   6篇
  2012年   8篇
  2011年   18篇
  2010年   10篇
  2009年   10篇
  2008年   12篇
  2007年   6篇
  2006年   8篇
  2005年   18篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   7篇
  2000年   5篇
  1999年   12篇
  1997年   3篇
  1995年   5篇
  1992年   9篇
  1991年   4篇
  1989年   4篇
  1988年   3篇
  1986年   3篇
  1984年   4篇
  1980年   5篇
  1979年   6篇
  1976年   6篇
  1975年   4篇
  1974年   6篇
  1972年   4篇
  1968年   5篇
  1961年   3篇
  1960年   3篇
  1959年   3篇
  1958年   3篇
  1955年   3篇
  1953年   3篇
  1949年   5篇
  1948年   3篇
  1931年   4篇
  1930年   4篇
  1929年   3篇
  1918年   2篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
281.
The zeta potential is one of the most important parameters influencing the electrokinetic coupling. Most reservoir rocks are saturated or partially saturated by natural water containing various types of ions (mostly monovalent and divalent ions). Therefore, understanding how the zeta potential behaves for mixtures of electrolytes is very important. In this work, measurements of the zeta potential for four different silica-based samples saturated by seven different mixtures of monovalent and divalent electrolytes are then carried out at a fixed ionic strength. It is seen that the magnitude of the measured zeta potential decreases with increasing divalent cation fraction. The experimental results are then explained by a model developed for mixtures of monovalent and divalent electrolytes. The result shows that the theoretical model is able to reproduce the main trend of the variation of the zeta potential with divalent cation fractions. Additionally, the model can fit the experimental data reported in literature well for reasonable values of the input parameters.  相似文献   
282.
Locally collected precipitation water can be actively used as a groundwater tracer solution based on four inherent tracer signals: electrical conductivity, stable isotopic signatures of deuterium [δ2H], oxygen-18 [δ18O], and heat, which all may strongly differ from the corresponding background values in the tested groundwater. In hydrogeological practice, a tracer test is one of the most important methods for determining subsurface connections or field parameters, such as porosity, dispersivity, diffusion coefficient, groundwater flow velocity, or flow direction. A common problem is the choice of tracer and the corresponding permission by the appropriate authorities. This problem intensifies where tracer tests are conducted in vulnerable conservation or water protection areas (e.g., around drinking water wells). The use of (if required treated) precipitation as an elemental groundwater tracer is a practical solution for this problem, as it does not introduce foreign matters into the aquifer system, which may contribute positively to the permission delivery. Before tracer application, the natural variations of the participating end members' tracer signals have to be evaluated locally. To obtain a sufficient volume of tracer solution, precipitation can be collected as rain using a detached, large-scale rain collector, which will be independent from possibly existing surfaces like roofs or drained areas. The collected precipitation is then stored prior to a tracer experiment.  相似文献   
283.
The petrographic, mineralogical, and geochemical compositions of the incipient devitrification products in impact melt fragments found in outer suevites at the Bosumtwi impact crater were studied to reconstruct the postimpact environmental constraints on the suevite formation and to refine its cooling history. Our study shows that devitrified melt/particles contain numerous microlitic crystals and crystal aggregates of different shapes derived from rapid cooling. The matrix of melt/particles in Bosumtwi suevites contains abundant Mg‐hercynite (pleonaste)‐type spinels with sizes rarely exceeding a few micrometers. High nucleation density of microlites suggests rapid crystallization under strong undercooling in the presence of abundant volatiles. Although the Bosumtwi impact event took place in a continental environment, the possible sources for elevated fluid/volatile content could have been the groundwater in the deeply weathered and fractured‐jointed Birimian basement, dewatering of abundant hydrous phases in weathered crust or hydrothermally altered basement, and the shale/phyllite–greywacke lithologies in the target rocks. Our results show that enough volatiles were present in the target rocks at the time of impact for the effective impact melt dispersion observed in Bosumtwi impactites.  相似文献   
284.

Characterization of karst systems and forecast of their state variables are essential for groundwater management and engineering in karst regions. These objectives can be met by the use of process-based discrete-continuum models (DCMs). However, results of DCMs may suffer from inversion nonuniqueness. It has been demonstrated that the joint inversion of observations regulated by different natural processes can tackle the nonuniqueness issue in groundwater modeling. However, this has not been tested for DCMs thus far. This research proposes a methodology for the joint inversion of hydro-thermo-chemo-graphs, applying to two small-scale sink-to-spring experiments at Freiheit Spring, Minnesota, USA. In order to address conceptual uncertainty, a multimodel approach was implemented, featuring seven mutually exclusive variants. Spring hydro-thermo-chemo-graphs, for all the variants simulated by MODFLOW-CFPv2, were jointly inverted using a weighted least squares algorithm. Subsequently, models were compared in terms of inversion and forecast performances, as well as parameter uncertainties. Results reveal the suitability of the DCM approach for simultaneous inversion and forecast of hydro-physico-chemical behavior of karst systems, even at a scale of meters and seconds. The estimated volume of the tracer conduit passage ranges from approximately 46–51 m3, which is comparable to the estimate from the flood-pulse method. Moreover, it was demonstrated that the thermograph and hydrograph contain more information about aquifer characteristics than the chemograph. However, this finding can be site-specific and should depend on the analysis scale, the considered conceptual models, and the hydrological state, which are potentially affected by minor unaccountable processes and features.

  相似文献   
285.
Snow deposition and redistribution are major drivers of snow cover dynamics in mountainous terrain and contribute to the mass balance of alpine glaciers. The quantitative understanding of inhomogeneous snow distribution in mountains has recently benefited from advances in measuring technologies, such as airborne laser scanning (ALS). This contribution further advances the quantitative understanding of snow distribution by analysing the areas of maximum surface elevation changes in a mountain catchment with large and small glaciers. Using multi‐annual ALS observations, we found extreme surface elevation changes on rather thin borders along the glacier margins. While snow depth distribution patterns in less extreme terrain have presented high inter‐annual persistence, there is little persistence of those extreme glacier accumulations between winters. We therefore interpret the lack of persistence as the result of a predominance of gravity‐driven redistribution, which has an inherently higher random component because it does not occur with all conditions in all winters. In highly crevassed zones, the lidar‐derived surface elevation changes are caused by a complex interaction of ice flux divergence, the propagation of crevasses and snow accumulation. In general, the relative contribution of gravitational mass transport to glacier snow cover volume was found to decrease for glaciers larger than 5 km2 in the investigated region. We therefore suggest that extreme accumulations caused by gravitational snow transport play a significant role in the glacier mass balance of small to medium‐size glaciers and that they may be successfully parameterized by simple mass redistribution algorithms, which have been presented in the literature.  相似文献   
286.
Whole-rock geochemical analyses using major and trace elements in combination with the Sm–Nd and Pb–Pb isotope systems, together with SHRIMP age dating on metasedimentary rocks from the Sierras de Chepes, the Sierras de Córdoba, the Sierra Norte and the San Luis Formation in the Sierra de San Luis, have been carried out to unravel the provenance and the geodynamic history of the Eastern Sierras Pampeanas, Central Argentina. The geochemical and the Sm–Nd data point to a slightly stronger mafic and less-fractionated material in the provenance area of the Sierras de Córdoba when compared to the other units. The TDM model ages from the Sierras de Chepes (~1.82 Ga) and the Sierra Norte (~1.79 Ga) are significantly older than the data from the Sierras de Córdoba (1.67 Ga). The Pb data are homogeneous for the different units. Only the 208Pb/204Pb ratios of some samples from the Sierras de Córdoba are higher. A late Pampean detrital zircon peak around 520 Ma from the Sierras de Chepes is in accordance with the new data from the San Luis Formation. This is similar to the literature data from the Famatina Belt located to the northwest of the Sierras de Chepes and also fits the detrital zircon peaks in the Mesón group. These maximum depositional ages were also reported from some locations in the Puncoviscana Formation but are absent in the Sierras de Córdoba. An improved model for the development of the Eastern Sierras Pampeanas in the area between the Sierras de Córdoba and the Puncoviscana Formation is provided. This gives new insights into the late Pampean development of the Sierra de San Luis and the complex development of the Eastern Sierras Pampeanas. This new model explains the younger detrital ages in the Puncoviscana Formation compared with the older ages of the Sierras de Córdoba. Another model of the Sierra de San Luis explains the younger depositional ages of the Pringles Metamorphic Complex and the San Luis Formation when compared to the Nogolí Metamorphic Complex and the Conlara Metamorphic Complex. Additionally, the rather fast change of the high-grade metamorphic conditions in the Pringles Metamorphic Complex and the low-grade metamorphic conditions in the San Luis Formation is explained by extension, the ascent of (ultra) mafic material and later folding and erosion.  相似文献   
287.
Large thermal extractions and extensive implementation of groundwater heat pumps (GWHP) necessitate a validation of the sustainability of their use and possible detrimental effects on groundwater. The goal of this work is to develop a regional heat transport model (of ~13 km × 5 km) for real site conditions. This model should consider all relevant transport processes, despite the large area under investigation. The model is based on a two-dimensional, transient-calibrated groundwater flow model for the “Leibnitzer Feld” (Styria, Austria). The two-dimensional horizontal model is linked via the FEFLOW interface manager with a newly developed “Multi-Layer-Model”-tool, which reproduces thermal aquifer–atmosphere interaction. Based on the regional heat transport model, scenarios are delineated for heating and cooling purposes for large GWHPs, which are appropriate for a small manufacturing business, an administrative building and 10 family homes. First of all, these have large spacing and thereafter, effects of area-covering usage of geothermal systems are evaluated for five administrative buildings located in close proximity to one another (200–350 m) and also for a large number of smaller heat extractions (each representing a one family house system). Modeled spatial and temporal temperature effects on the shallow aquifer are discussed. It was possible to present a simulation of realistic heating and cooling scenarios. This simulation may be introduced into practice once some further simplifications to the system are made. Locally limited heat plumes (max. length: 625 m) were observed for the manufacturing business. Any thermal effects coming from the geothermal systems were shown to be temporally stable. As such, no distinct trend of reduced annual temperatures could be observed.  相似文献   
288.
The aim of this experimental study was to evaluate and compare the geochemical impact of pure and impure CO2 on rock forming minerals of possible CO2 storage reservoirs. This geochemical approach takes into account the incomplete purification of industrial captured CO2 and the related effects during injection, and provides relevant data for long-term storage simulations of this specific greenhouse gas. Batch experiments were conducted to investigate the interactions of supercritical CO2, brine and rock-forming mineral concentrates (albite, microcline, kaolinite, biotite, muscovite, calcite, dolomite and anhydrite) using a newly developed experimental setup. After up to 42 day (1000 h) experiments using pure and impure supercritical CO2 the dissolution and solution characteristics were examined by XRD, XRF, SEM and EDS for the solid, and ICP–MS and IC for the fluid reactants, respectively. Experiments with mixtures of supercritical CO2 (99.5 vol.%) and SO2 or NO2 impurities (0.5 vol.%) suggest the formation of H2SO4 and HNO3, reflected in pH values between 1 and 4 for experiments with silicates and anhydrite and between 5 and 6 for experiments with carbonates. These acids should be responsible for the general larger amount of cations dissolved from the mineral phases compared to experiments using pure CO2. For pure CO2 a pH of around 4 was obtained using silicates and anhydrite, and 7–8 for carbonates. Dissolution of carbonates was observed after both pure and impure CO2 experiments. Anhydrite was corroded by approximately 50 wt.% and gypsum precipitated during experiments with supercritical CO2 + NO2. Silicates do not exhibit visible alterations during all experiments but released an increasing amount of cations in the reaction fluid during experiments with impure CO2. Nonetheless, precipitated secondary carbonates could not be identified.  相似文献   
289.
Numerical modeling of interacting flow and transport processes between different hydrological compartments, such as the atmosphere/land surface/vegetation/soil/groundwater systems, is essential for understanding the comprehensive processes, especially if quantity and quality of water resources are in acute danger, like e.g. in semi-arid areas and regions with environmental contaminations. The computational models used for system and scenario analysis in the framework of an integrated water resources management are rapidly developing instruments. In particular, advances in computational mathematics have revolutionized the variety and the nature of the problems that can be addressed by environmental scientists and engineers. It is certainly true that for each hydro-compartment, there exists many excellent simulation codes, but traditionally their development has been isolated within the different disciplines. A new generation of coupled tools based on the profound scientific background is needed for integrated modeling of hydrosystems. The objective of the IWAS-ToolBox is to develop innovative methods to combine and extend existing modeling software to address coupled processes in the hydrosphere, especially for the analysis of hydrological systems in sensitive regions. This involves, e.g. the provision of models for the prediction of water availability, water quality and/or the ecological situation under changing natural and socio-economic boundary conditions such as climate change, land use or population growth in the future.  相似文献   
290.
The electron–cyclotron maser is a process that generates coherent radiation from plasma. In the last two decades, it has gained increasing attention as a dominant mechanism of producing high-power radiation in natural high-temperature magnetized plasmas. Originally proposed as a somewhat exotic idea and subsequently applied to include non-relativistic plasmas, the electron–cyclotron maser was considered as an alternative to turbulent though coherent wave–wave interaction which results in radio emission. However, when it was recognized that weak relativistic corrections had to be taken into account in the radiation process, the importance of the electron–cyclotron maser rose to the recognition it deserves. Here we review the theory and application of the electron–cyclotron maser to the directly accessible plasmas in our immediate terrestrial and planetary environments. In situ access to the radiating plasmas has turned out to be crucial in identifying the conditions under which the electron–cyclotron maser mechanism is working. Under extreme astrophysical conditions, radiation from plasmas may provide a major energy loss; however, for generating the powerful radiation in which the electron–cyclotron maser mechanism is capable, the plasma must be in a state where release of susceptible amounts of energy in the form of radiation is favorable. Such conditions are realized when the plasma is unable to digest the available free energy that is imposed from outside and stored in its particle distribution. The lack of dissipative processes is a common property of collisionless plasmas. When, in addition, the plasma density becomes so low that the amount of free energy per particle is large, direct emission becomes favorable. This can be expressed as negative absorption of the plasma which, like in conventional masers, leads to coherent emission even though no quantum correlations are involved. The physical basis of this formal analogy between a quantum maser and the electron–cyclotron maser is that in the electron–cyclotron maser the free-space radiation modes can be amplified directly. Several models have been proposed for such a process. The most famous one is the so-called loss-cone maser. However, as argued in this review, the loss-cone maser is rather inefficient. Available in situ measurements indicate that the loss-cone maser plays only a minor role. Instead, the main source for any strong electron–cyclotron maser is found in the presence of a magnetic-field-aligned electric potential drop which has several effects: (1) it dilutes the local plasma to such an extent that the plasma enters the regime in which the electron–cyclotron maser becomes effective; (2) it generates energetic relativistic electron beams and field-aligned currents; (3) it deforms, together with the magnetic mirror force, the electron distribution function, thereby mimicking a high energy level sufficiently far above the Maxwellian ground state of an equilibrium plasma; (4) it favors emission in the free-space RX mode in a direction roughly perpendicular to the ambient magnetic field; (5) this emission is the most intense, since it implies the coherent resonant contribution of a maximum number of electrons in the distribution function to the radiation (i.e., to the generation of negative absorption); (6) it generates a large number of electron holes via the two-stream instability, and ion holes via the current-driven ion-acoustic instability which manifest themselves as subtle fine structures moving across the radiation spectrum and being typical for the electron–cyclotron maser emission process. These fine structures can thus be taken as the ultimate identifier of the electron–cyclotron maser. The auroral kilometric radiation of Earth is taken here as the paradigm for other manifestations of intense radio emissions such as the radiation from other planets in the solar system, from exoplanets, the Sun and other astrophysical objects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号