首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   6篇
  国内免费   3篇
大气科学   2篇
地球物理   19篇
地质学   23篇
海洋学   11篇
天文学   21篇
自然地理   2篇
  2021年   3篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   1篇
  2012年   2篇
  2011年   10篇
  2010年   7篇
  2009年   4篇
  2008年   3篇
  2007年   1篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   2篇
  2002年   1篇
  2001年   6篇
  1999年   2篇
  1998年   1篇
  1982年   1篇
  1980年   1篇
  1970年   1篇
排序方式: 共有78条查询结果,搜索用时 15 毫秒
41.
42.
By modifying a previous method with constant elements, we developed a quadratic element method for more accurately estimating groundwater flow by the inversion of tilt data. In this method: (1) a region of groundwater flow is divided into quadratic elements in which the change in groundwater volume per unit volume of rock (Δv) and the Skempton coefficient (B) vary in a quadratic manner with the coordinates, (2) the values of Δv are set to zero at the boundaries of the region of groundwater flow and (3) the sum of the squared second derivatives of Δv is adopted as a constraining condition that is weighted and added to the sum of the squared errors in tilt. First, analyses were performed for a flow model to determine the accuracy of this method for estimating groundwater flow and also to clarify the effect of the assumed size of a region of groundwater flow. These analyses showed that the quadratic element method proposed in this study gives a much better estimation of Δv than the constant element method and that a large region of groundwater flow should be assumed, rather than a small region, since the values of Δv at points outside of the actual region of groundwater flow are estimated to be nearly zero when a large region is assumed while these values are greatly overestimated when an excessively small region is assumed. Finally, the quadratic element method was applied to the site of the Mizunami Underground Research Laboratory in the Tono area, Japan. Inverse analyses were performed for tilt data measured by four tiltmeters with a resolution of 10−9 radians during the excavation of two shafts under the assumption that the rock mass is an isotropic and homogeneous half- space. The results showed that the method proposed in this study reproduced the tilt data very accurately. Thus, the distribution of Δv was estimated without sacrificing the reproducibility of the tilt data. The contour maps of B(1 + ν)Δv (ν: Poisson’s ratio) showed that the heterogeneous flow of groundwater occurred at the site and that groundwater volume decreased mainly in the area surrounded by two faults. The latter result is consistent with the finding obtained by previous investigations that these faults have low permeability in the direction perpendicular to the strike and may act as a flow barrier.  相似文献   
43.
Stable carbon and oxygen isotope composition of fossilized brachiopod shells serves as an important source to delineate Earth's paleoenvironmental evolution in the Phanerozoic. However, the original isotopic composition is potentially modified by various kinds of diagenesis. To evaluate the extent to which the original isotopic composition of fossilized brachiopod shells is modified by meteoric diagenesis, microstructure, cathodoluminescence (CL) images, and carbon and oxygen isotope composition of fossilized Kikaithyris hanzawai (rhynchonellate brachiopod) shells were examined. The shells were collected from Pleistocene shallow marine carbonates exposed on the Ryukyu Islands, southwestern Japan. The extent of diagenetic alteration is quantitatively evaluated here as both the preservation state of the original shell microstructure and the luminescence/non‐luminescence of shells. Although altered fibers were commonly observed in the brachiopod shells, the original isotopic composition was almost retained. There are no significant differences in the isotopic composition between the luminescent and non‐luminescent shells. There is no direct relationship between the preservation state of the original shell microstructure and the luminescence/non‐luminescence of shells at three of four horizons, indicating that CL images are not necessarily useful for the detection of diagenetic alteration of shells or shell portions. Applying multiple criteria to assessing diagenetic alteration and cross‐checking them are required to distinguish between diagenetically altered and unaltered brachiopod shells.  相似文献   
44.
Recent dasycladalean algae (Dasycladales, Chlorophyta) are classified into two families, 11 genera, and 44 species, and inhabit the tropical to warm‐temperate waters of the world. Twelve species of dasycladalean algae occur in Okinawa Jima, Ryukyu Islands. In this paper, the present‐day dasycladalean species and their distributions in Okinawa Jima are reported and their paleontological implications are discussed. Dasycladalean algae grow mainly on coral rubble and rocks, often forming large meadows in calm shallow lagoons. However, Dasycladus vermicularis occurs in deeper waters, at depths of 15–89 m, around Okinawa Jima. Neomeris annulata is found at water depths of 0–30 m. These data throw doubt on the interpretation that the occurrence of dasycladalean algae is linked to warm shallow habitats.  相似文献   
45.
Since the Saturn orbit insertion of the Cassini spacecraft in mid-2004, the Cassini composite infrared spectrometer (CIRS) measured temperatures of Saturn’s main rings at various observational geometries. In the present study, we apply our new thermal model (Morishima, R., Salo, H., Ohtsuki, K. [2009]. Icarus 201, 634-654) for fitting to the early phase Cassini data (Spilker, L.J., and 11 colleagues [2006]. Planet. Space Sci. 54, 1167-1176). Our model is based on classical radiative transfer and takes into account the heat transport due to particle motion in the azimuthal and vertical directions. The model assumes a bimodal size distribution consisting of small fast rotators and large slow rotators. We estimated the bolometric Bond albedo, AV, the fraction of fast rotators in cross section, ffast, and the thermal inertia, Γ, by the data fitting at every radius from the inner C ring to the outer A ring. The albedo AV is 0.1-0.4, 0.5-0.7, 0.4, 0.5 for the C ring, the B ring, the Cassini division, and the A ring, respectively. The fraction ffast depends on the ratio of scale height of fast rotators to that of slow rotators, hr. When hr = 1, ffast is roughly half for the entire rings, except for the A ring, where ffast increases from 0.5 to 0.9 with increasing saturnocentric radius. When hr increases from 1 to 3, ffast decreases by 0.2-0.4 for the B and A rings while no change in ffast is seen for the optically thin C ring and Cassini division. The large ffast seen in the outer A ring probably indicates that a large number of small particles detach from large particles in high velocity collisions due to satellite perturbations or self-gravity wakes. The thermal inertia, Γ, is constrained from the efficiency of the vertical heat transport due to particle motion between the lit and unlit faces, and is coupled with the type of vertical motion. We found that in most regions, except for the mid B ring, sinusoidal vertical motion without bouncing is more reasonable than cycloidal motion assuming bouncing at the midplane, because the latter motion gives too large Γ as compared with previous estimations. For the mid B ring, where the optical depth is highest in Saturn’s rings, cycloidal vertical motion is more reasonable than sinusoidal vertical motion which gives too small Γ.  相似文献   
46.
Rock erosion is attracting increasing attention from scientists worldwide. The area encompassing the Saint John Baptist Church, Saint John Village, XVII century ruins in Rio Grande do Sul at the UNESCO World Heritage Site is considered a Brazilian treasure. However, the risk of damage to this site from rock erosion has recently increased tremendously. Generally, the rocky construction such as fence, wall and tomb stone, seems strong but is actually extremely sensitive to erosion caused by lichens, fungi, molds and bacteria. Because of biological erosion and massive exposure, the fresh rock is dominated by clays and microorganisms. Water-adsorbing clays and microorganisms influence the mechanisms of the rock erosion. In this study, the formation of bio-clay-minerals in porous structure of pisolite was demonstrated using electron microscopy. Bacterial clay mineralization can deform the rock structure and even produce organic materials. Biological activity could easily corrode rocky constructions around the Saint John Baptist Church site. The rocks are pisolitic laterites possibly formed in Tertiary over the Kretaceous Parana flood Basalts. Samples inhabited by lichens and fungi were collected from a collapsed wall in the ancient church. The zonal reddish-brown pisolites are 4 mm in diameter in a matrix of clays associated with porous and empty spaces. Elemental distribution maps from X-ray fluorescence microscopy show iron-rich spherules of pisolite, whereas the matrix is composed of Al, Si, Mn, and Sr; thus producing goethite and kaolinite. Transmission electron microscopic observation showed that various types of bacteria inhabit the spherule and are associated with clay minerals and graphite. STEM elemental analysis confirmed the bio-clay-mineralization with Al, Si, S, and Fe, around bacterial cells. The results presented here will improve our understanding of nm-scale bio-mineralization and bio-erosion in lateritic rocks. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
47.
48.
The Sutter's Mill (SM) CM chondrite fell in California in 2012. The CM chondrite group is one of the most primitive, consisting of unequilibrated minerals, but some of them have experienced complex processes occurring on their parent body, such as aqueous alteration, thermal metamorphism, brecciation, and solar wind implantation. We have determined noble gas concentrations and isotopic compositions for SM samples using a stepped heating gas extraction method, in addition to mineralogical observation of the specimens. The primordial noble gas abundances, especially the P3 component trapped in presolar diamonds, confirm the classification of SM as a CM chondrite. The mineralogical features of SM indicate that it experienced mild thermal alteration after aqueous alteration. The heating temperature is estimated to be <350 °C based on the release profile of primordial 36Ar. The presence of a Ni‐rich Fe‐Ni metal suggests that a minor part of SM has experienced heating at >500 °C. The variation in the heating temperature of thermal alteration is consistent with the texture as a breccia. The heterogeneous distribution of solar wind noble gases is also consistent with it. The cosmic‐ray exposure (CRE) age for SM is calculated to be 0.059 ± 0.023 Myr based on cosmogenic 21Ne by considering trapped noble gases as solar wind, the terrestrial atmosphere, P1 (or Q), P3, A2, and G components. The CRE age lies at the shorter end of the CRE age distribution of the CM chondrite group.  相似文献   
49.
In order to investigate the incorporation of Sr, Mg, and U into coral skeletons and its temperature dependency, we performed a culture experiment in which specimens of the branching coral (Porites cylindrica) were grown for 1 month at three seawater temperatures (22, 26, and 30 °C). The results of this study showed that the linear extension rate of P. cylindrica has little effect on the skeletal Sr/Ca, Mg/Ca, and U/Ca ratios. The following temperature equations were derived: Sr/Ca (mmol/mol) = 10.214(±0.229) − 0.0642(±0.00897) × T (°C) (r2 = 0.59, p < 0.05); Mg/Ca (mmol/mol) = 1.973(±0.302) + 0.1002(±0.0118) × T (°C) (r2 = 0.67, p < 0.05); and U/Ca (μmol/mol) = 1.488(±0.0484) − 0.0212(±0.00189) × T (°C) (r2 = 0.78, p < 0.05). We calculated the distribution coefficient (D) of Sr, Mg, and U relative to seawater temperature and compared the results with previous data from massive Porites corals. The seawater temperature proxies based on D calibrations of P. cylindrica established in this study are generally similar to those for massive Porites corals, despite a difference in the slope of DU calibration. The calibration sensitivity of DSr, DMg, and DU to seawater temperature change during the experiment was 0.64%/°C, 1.93%/°C, and 1.97%/°C, respectively. These results suggest that the skeletal Sr/Ca ratio (and possibly the Mg/Ca and/or U/Ca ratio) of the branching coral P. cylindrica can be used as a potential paleothermometer.  相似文献   
50.
The Pu isotopes, 239Pu and 240Pu, were determined in annually-banded skeletons of an accurately dated (1943-1999) modern coral (Porites lobata) from Guam Island to identify historical Pu sources to the tropical Northwest Pacific Ocean. Activity concentrations of 239+240Pu and 240Pu/239Pu atom ratios were determined in the dated coral bands using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). Close-in fallout from the former US Pacific Proving Grounds (PPG) in the Marshall Islands and global fallout were identified as the two main sources. The Guam site was dominated by PPG close-in fallout in the 1950s, with an average 240Pu/239Pu atom ratio of 0.315 ± 0.005. In addition, a higher 240Pu/239Pu atom ratio (0.456 ± 0.020) was observed that could be attributed to fallout from the “Ivy Mike” thermonuclear detonation in 1952. The atom ratio decreased in the 1960s and 1970s due to increase in the global fallout with a low 240Pu/239Pu atom ratio (∼0.18). Recent coral bands (1981-1999) are dominated by the transport of remobilised Pu, with high 240Pu/239Pu atom ratios, from the Marshall Islands to Guam Island along the North Equatorial Current (NEC). This remobilised Pu was estimated to comprise 69% of the total Pu in the recent coral bands, although its contribution was variable over time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号