首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   19篇
  国内免费   1篇
测绘学   12篇
大气科学   37篇
地球物理   92篇
地质学   125篇
海洋学   44篇
天文学   61篇
综合类   3篇
自然地理   44篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   15篇
  2020年   19篇
  2019年   17篇
  2018年   19篇
  2017年   15篇
  2016年   22篇
  2015年   16篇
  2014年   25篇
  2013年   35篇
  2012年   17篇
  2011年   22篇
  2010年   23篇
  2009年   14篇
  2008年   20篇
  2007年   18篇
  2006年   16篇
  2005年   13篇
  2004年   9篇
  2003年   11篇
  2002年   8篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1973年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有418条查询结果,搜索用时 31 毫秒
281.
In recent decades, slope instability in high-mountain regions has often been linked to increase in temperature and the associated permafrost degradation and/or the increase in frequency/intensity of rainstorm events. In this context we analyzed the spatiotemporal evolution and potential controlling mechanisms of small- to medium-sized mass movements in a high-elevation catchment of the Italian Alps (Sulden/Solda basin). We found that slope-failure events (mostly in the form of rockfalls) have increased since the 2000s, whereas the occurrence of debris flows has increased only since 2010. The current climate-warming trend registered in the study area apparently increases the elevation of rockfall-detachment areas by approximately 300 m, mostly controlled by the combined effects of frost-cracking and permafrost thawing. In contrast, the occurrence of debris flows does not exhibit such an altitudinal shift, as it is primarily driven by extreme precipitation events exceeding the 75th percentile of the intensity-duration rainfall distribution. Potential debris-flow events in this environment may additionally be influenced by the accumulation of unconsolidated debris over time, which is then released during extreme rainfall events. Overall, there is evidence that the upper Sulden/Solda basin (above ca. 2500 m above sea level [a.s.l.]), and especially the areas in the proximity of glaciers, have experienced a significant decrease in slope stability since the 2000s, and that an increase in rockfalls and debris flows during spring and summer can be inferred. Our study thus confirms that “forward-looking” hazard mapping should be undertaken in these increasingly frequented, high-elevation areas of the Alps, as environmental change has elevated the overall hazard level in these regions.  相似文献   
282.
Among the environmental problems that could affect agriculture, one of the most critical is ponding. This may be defined as water storage on the surface in concavities and depressions due to soil saturation. Stagnant water can seriously affect crops and the management of agricultural landscapes. It is mainly caused by prolonged rainfall events, soil type, or wrong mechanization practices, which cause soil compaction. To better understand this problem and thus provide adequate solutions to reduce the related risk, high-resolution topographic information could be strategically important because it offers an accurate representation of the surface morphology. In the last decades, new remote sensing techniques provide interesting opportunities to understand the processes on the Earth's surface based on geomorphic signatures. Among these, Uncrewed Aerial Vehicles (UAVs), combined with the structure-from-motion (SfM) photogrammetry technique, represent a solid, low-cost, rapid, and flexible solution for geomorphological analysis. This study aims to present a new approach to detect the potential areas exposed to water stagnation at the farm scale. The high-resolution digital elevation model (DEM) from UAV-SfM data is used to do this. The potential water depth was calculated in the DEM using the relative elevation attribute algorithm. The detection of more pronounced concavities and convexities allowed an estimation and mapping of the potential ponding conditions. The results were assessed by observations and field measurements and are promising, showing a Cohen's k(X) accuracy of 0.683 for the planimetric extent of the ponding phenomena and a Pearson's rxy coefficient of 0.971 for the estimation of pond water depth. The proposed workflow provides a useful indication to stakeholders for better agricultural management in lowland landscapes.  相似文献   
283.
We demonstrate that major asymmetries in erupting filaments and CMEs, namely major twists and non-radial motions are typically related to the larger-scale ambient environment around eruptive events. Our analysis of prominence eruptions observed by the STEREO, SDO, and SOHO spacecraft shows that prominence spines retain, during the initial phases, the thin ribbon-like topology they had prior to the eruption. This topology allows bending, rolling, and twisting during the early phase of the eruption, but not before. The combined ascent and initial bending of the filament ribbon is non-radial in the same general direction as for the enveloping CME. However, the non-radial motion of the filament is greater than that of the CME. In considering the global magnetic environment around CMEs, as approximated by the Potential Field Source Surface (PFSS) model, we find that the non-radial propagation of both erupting filaments and associated CMEs is correlated with the presence of nearby coronal holes, which deflect the erupting plasma and embedded fields. In addition, CME and filament motions, respectively, are guided towards weaker field regions, namely null points existing at different heights in the overlying configuration. Due to the presence of the coronal hole, the large-scale forces acting on the CME may be asymmetric. We find that the CME propagates usually non-radially in the direction of least resistance, which is always away from the coronal hole. We demonstrate these results using both low- and high-latitude examples.  相似文献   
284.
Flaring arches     
Martin  Sara F.  Švestka  Zdenek F. 《Solar physics》1987,113(1-2):303-304
  相似文献   
285.
286.
287.
Ephemeral active regions (ER) identified on Kitt Peak daily full-disk magnetograms from April through November 1975 were analyzed and compared with larger active regions during the same interval. The 1975 ER were also compared with ER data from 1970, 1973, 1976, and 1977. ER were found to vary approximately with the sunspot cycle. However, a minimum in the number of ER occurred at least one year prior to sunspot minimum. All evidence to date indicates that the early ER minimum was due to the rise of solar cycle 21 primarily in the form of ER. ER were statistically identified as belonging to both outgoing solar cycle 20 and incoming cycle 21 by maxima in their distribution in latitude and by their statistically dominant orientation as a function of latitude. From the identification of ER with specific solar cycles and the persistent presence of high latitude ER maxima since 1970, it is suggested that the outgoing and incoming solar cycles may co-exist on the sun longer than the 0–3 year period of overlap between successive cycles already known from the properties of large sunspot-producing active regions.Presently associated with Solar Physics Research Corporation, Tucson, Arizona and Visiting Astronomer at Kitt Peak National Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   
288.
Intersex in Roe's abalone (Haliotis roei) in Western Australia   总被引:1,自引:0,他引:1  
  相似文献   
289.
What are the strange dark clasts within carbonaceous chondrites? How did they form? And what do they tell us about the early solar system? Mark Sephton, one of a team investigating the Allende meteorite, summarizes their findings.  相似文献   
290.
Analysis of climatic and topographic evidence from the Cascade Range of Washington State indicates that glacial erosion limits the height and controls the morphology of this range. Glacial erosion linked to long-term spatial gradients in the ELA created a tilted, planar zone of 373 cirques across the central part of the range; peaks and ridges now rise ≤600 m above this zone. Hypsometric analysis of the region shows that the proportion of land area above the cirques drops sharply, and mean slopes >30° indicate that the areas above the cirques may be at or near threshold steepness. The mean plus 1σ relief of individual cirque basins (570 m) corresponds to the ∼600-m envelope above which peaks rarely rise. The summit altitudes are set by a combination of higher rates of glacial and paraglacial erosion above the ELA and enhanced hillslope processes due to the creation of steep topography. On the high-precipitation western flank of the Cascades, the dominance of glacial and hillslope erosion at altitudes at and above the ELA may explain the lack of a correspondence between stream-power erosion models and measured exhumation rates from apatite (U-Th/He) thermochronometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号