首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2172篇
  免费   113篇
  国内免费   17篇
测绘学   53篇
大气科学   166篇
地球物理   564篇
地质学   666篇
海洋学   185篇
天文学   441篇
综合类   7篇
自然地理   220篇
  2021年   34篇
  2020年   31篇
  2019年   37篇
  2018年   54篇
  2017年   53篇
  2016年   80篇
  2015年   43篇
  2014年   67篇
  2013年   106篇
  2012年   83篇
  2011年   107篇
  2010年   91篇
  2009年   127篇
  2008年   115篇
  2007年   98篇
  2006年   91篇
  2005年   92篇
  2004年   77篇
  2003年   78篇
  2002年   76篇
  2001年   48篇
  2000年   49篇
  1999年   52篇
  1998年   49篇
  1997年   26篇
  1996年   42篇
  1995年   29篇
  1994年   28篇
  1993年   21篇
  1992年   29篇
  1991年   16篇
  1990年   23篇
  1989年   18篇
  1988年   18篇
  1987年   14篇
  1986年   14篇
  1985年   22篇
  1984年   28篇
  1983年   24篇
  1982年   21篇
  1981年   20篇
  1980年   10篇
  1979年   23篇
  1978年   20篇
  1977年   23篇
  1976年   8篇
  1975年   14篇
  1974年   11篇
  1973年   12篇
  1967年   8篇
排序方式: 共有2302条查询结果,搜索用时 15 毫秒
991.
992.
993.
994.
Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and levelling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature vs distance) for 53 rivers in the Pacific Northwest (USA) using an extensive data set of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
995.
Stochastic weather generators have evolved as tools for creating long time series of synthetic meteorological data at a site for risk assessments in hydrologic and agricultural applications. Recently, their use has been extended as downscaling tools for climate change impact assessments. Non‐parametric weather generators, which typically use a K‐nearest neighbour (K‐NN) resampling approach, require no statistical assumptions about probability distributions of variables and can be easily applied for multi‐site use. Two characteristics of traditional K‐NN models result from resampling daily values: (1) temporal correlation structure of daily temperatures may be lost, and (2) no values less than or exceeding historical observations can be simulated. Temporal correlation in simulated temperature data is important for hydrologic applications. Temperature is a major driver of many processes within the hydrologic cycle (for example, evaporation, snow melt, etc.) that may affect flood levels. As such, a new methodology for simulation of climate data using the K‐NN approach is presented (named KnnCAD Version 4). A block resampling scheme is introduced along with perturbation of the reshuffled daily temperature data to create 675 years of synthetic historical daily temperatures for the Upper Thames River basin in Ontario, Canada. The updated KnnCAD model is shown to adequately reproduce observed monthly temperature characteristics as well as temporal and spatial correlations while simulating reasonable values which can exceed the range of observations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
996.
Modelled hydrologic processes are represented in a set of numerical equations; the complexity of which can be measured by the total number of variables needed. A single dominant hydrologic process could control the hydrologic response of a watershed, and so the identification of the corresponding dominant variable(s) would aid in identifying a parsimonious model and in collecting more reliable data. By accounting for both model complexity and serial correlation in the variables, a model is used to identify the dominant variables for representing watershed scale streamflow, sediment transport and phosphorus yields. Long‐term water quantity and quality data were used to show that rainfall and non‐linear soil water storage were the dominant variables for weekly streamflow, suspended sediment and particulate phosphorus. Model accuracy did not consistently improve when other statistically significant variables were included. The results suggest that improved model performance may not justify the added model complexity. As such, identification of dominant variables would be the priority for developing parsimonious hydrologic models, especially at watershed scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
997.
Hydrological and land surface models require simple but accurate methods to predict the solar radiation transmitted through vegetation to snow, backed up by direct comparisons to data. Twenty shortwave pyranometers were deployed in forest plots of varying canopy structures and densities in sparse birch forest near Abisko, Sweden, in spring 2011 and mixed conifer forest near Sodankylä, Finland, in spring 2012. Above‐canopy global and diffuse shortwave irradiances were also measured. These data were used to test a model that uses hemispherical photographs to explicitly estimate both diffuse radiation and direct beam transmission, as well as two models that apply bulk canopy parameters and versions of Beers Law. All three models predict canopy shortwave transmission similarly well for leafless birch forest, but for conifers, the bulk methods perform poorly. In addition, an existing model of multiple reflections between canopy and snow was found to be suitable for birch, but not conifers. A new bulk approach based on empirical relationships with hemisphere‐averaged sky view fraction showed improved performance for both sites; this suggests benefits of avoiding the use of plant area index calculated from optical methods, which can introduce errors. Furthermore, tests using common empirical diffuse radiation models were shown to underestimate shortwave transmission by up to 7% relative to using the data, suggesting that new diffuse models are required for high latitudes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
998.
Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end‐member mixing analysis that used high‐resolution specific conductance measurements (SC‐EMMA) were used to estimate daily and average long‐term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC‐EMMA is strongly related to the choice of slowflow and fastflow end‐member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end‐members. There were substantial discrepancies among the BFI and SC‐EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC‐EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
999.
By incorporating the nonlinear variation of a soil's compressibility and permeability during the process of consolidation, an analytical solution for the radial consolidation of vertical drains has been developed for a general time‐variable loading. The general solution was verified for the cases of instantaneous loading and ramp loading. Detailed solutions were further derived for two special loading schemes: multistage loading and preloading–unloading–reloading. The nonlinear consolidation behavior of a vertical drain subjected to these two types of loading schemes was then investigated by a parametric study. The results show that the loading rate, the ratio of the compressibility index to the permeability index (Cc/Ck), and the initial stress state have a significant influence on the consolidation rate. A smaller value of Cc/Ck, a larger initial stress, or a fast loading rate always leads to a rapid consolidation rate. During the unloading period, a negative excess pore water pressure may occur, and a slower unloading rate may reduce this negative value. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1000.
Although temporal variation in headwater stream chemistry has long been used to document baseline conditions and response to environmental drivers, less attention is paid to fine scale spatial variations that could yield clues to processes controlling stream water sources. We documented spatial and temporal variation in water composition in a headwater catchment (41 ha) at the Hubbard Brook Experimental Forest, NH, USA. We sampled every 50 m along an ephemeral to perennial stream network as well as groundwater from seeps and 35 shallow wells across varying flow conditions. Groundwater influences on surface water in this region have not been considered to be important in past studies as relatively coarse soils were assumed to be well drained in steep catchments with flashy runoff response. However, seeps displayed perennial discharge, upslope accumulated areas (UAA) smaller than those for channel initiation sites and higher pH, Ca and Si concentrations than streams, suggesting relatively long groundwater residence time or long subsurface flow paths not bound by topographic divides. Coupled with a large range in groundwater chemistry seen in wells, these results suggest stream chemistry variation reflects the range of connectivity with, and quality of, groundwater controlled by hillslope hydropedological processes. The magnitude of variations of solute concentrations seen in the first order catchment was as broad as that seen at the fifth order Hubbard Brook Valley (3519 ha). Reduction in variation in solute concentrations with increasing UAA suggested a representative elementary area (REA) value of less than 3 ha in the first order catchment, compared with 100 ha for the fifth order basin. Thus, the REA is not necessarily an elementary catchment property. Rather, the partitioning of variation between highly variable upstream sources and relatively homogenous downstream characteristics may have different physical significance depending on the scale and complexity of the catchment under examination. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号