首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   31篇
  国内免费   1篇
测绘学   10篇
大气科学   13篇
地球物理   98篇
地质学   98篇
海洋学   27篇
天文学   70篇
自然地理   44篇
  2024年   1篇
  2022年   3篇
  2021年   7篇
  2020年   12篇
  2019年   10篇
  2018年   20篇
  2017年   14篇
  2016年   19篇
  2015年   11篇
  2014年   8篇
  2013年   19篇
  2012年   16篇
  2011年   28篇
  2010年   15篇
  2009年   25篇
  2008年   17篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   11篇
  2003年   9篇
  2002年   13篇
  2001年   9篇
  2000年   11篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   4篇
  1974年   4篇
  1973年   2篇
  1972年   2篇
排序方式: 共有360条查询结果,搜索用时 46 毫秒
281.
The Molasse Basin of Switzerland evolved through a distinct late Neogene history with initial development as a classic foredeep or foreland basin in response to loading of the lithosphere by the Alpine orogen. In the central and western foreland, the foredeep behaviour was terminated by deformation and uplift of the Jura Mountains in the distal regions of the foredeep. Following the Jura deformation the Plateau Molasse remained largely undeformed as it rode ‘piggy‐back’ style above the decollement feeding displacement into the Jura. Sediment accumulation data for the Molasse suggests that sedimentation in the Plateau Molasse region continued until the basin was inverted at about 5 Ma. We present a mechanical model for this sequence of events in which deformation jumps across much of the basin to the distal Jura because of the dip on the weak evaporitic decollement and the wedge‐shape of the foredeep basin. Subsequently, the Plateau Molasse remained largely undeformed as a result of continued sedimentation in a wedgetop basin, where the physical properties and geometry of the orogenic wedge combine to produce a critical wedge whose critical surface slope would be less than zero and thus should dip towards the Alpine interior. Accommodation space is created over this negative surface–slope segment of the wedge and sedimentation maintains this slope near zero, stabilizing the wedge. We present a simple analytical theory for the necessary conditions for such a ‘negative‐alpha basin’ to develop and be maintained. We compare this theory to the late Neogene evolution of the Alps, Molasse Basin and Jura Mountains and infer physical properties for the decollement.  相似文献   
282.
This paper describes the operational principles, design and field testing of a new, compact, Faraday filter-based spectrometer to measure the D2 (589.158 nm) to D1 (589.756 nm) intensity ratio of the sodium nightglow. This work was motivated by the observations of Slanger et al. (2005) who reported an annual variation in D2/D1 with values ranging from 1.2 to 1.8. Their proposed explanation, a modified Chapman mechanism, requires that the intensity ratio is related to the concentration ratio of atomic oxygen [O] to molecular oxygen [O2]. Our method of measuring D2/D1 utilizes narrowband Na vapor Faraday filters, which can yield observations on the fractional contributions of the two chemical pathways of the modified Chapman mechanism. Since delineation of the two chemical pathways requires a spectral resolution of 0.0002 nm, this is not possible with any other existing instrument.  相似文献   
283.
Interdisciplinary research: framing and reframing   总被引:1,自引:0,他引:1  
Framing encompasses the processes of identifying and bounding the area of research and based on our own experiences as academics we have found significant differences in the ways that researchers establish and frame a disciplinary, compared to an interdisciplinary, research project. In this paper we have attempted to contribute to the development of the conceptual framework underpinning interdisciplinary research through analysis of interviews with a number of academics already working in an interdisciplinary manner. Successful projects are able to identify and support the processes that allow the communication and negotiation that is necessary, not just for the initial framing of a research funding proposal but to be able to maintain negotiation. Self awareness and continual reflexivity and a willingness to be questioned by others are essential to this process.  相似文献   
284.
Using a slab of Massillon Sandstone, laboratory-scale solute tracer experiments were carried out to test numerical simulations using the Advection–Dispersion Equation (ADE). While studies of a similar nature exist, our work differs in that we combine: (1) experimentation in naturally complex geologic media, (2) X-ray absorption imaging to visualize and quantify two-dimensional solute transport, (3) high resolution transport property characterization, with (4) numerical simulation. The simulations use permeability, porosity, and solute concentration measured to sub-centimeter resolution. While bulk breakthrough curve characteristics were adequately matched, large discrepancies exist between the experimental and simulated solute concentration fields. Investigation of potential experimental errors suggests that the failure to fit solute concentration fields may lie in loss of intricate connectivity within the cross-bedded sandstone occurring at scales finer than our property characterization measurements (i.e., sub-centimeter).  相似文献   
285.
Pressure to decrease reliance on surface water storage has led to increased interest in aquifer storage and recovery (ASR) systems. Recovery efficiency, which is the ratio of the volume of recovered water that meets a predefined standard to total volume of injected fluid, is a common criterion of ASR viability. Recovery efficiency can be degraded by a number of physical and geochemical processes, including rate-limited mass transfer (RLMT), which describes the exchange of solutes between mobile and immobile pore fluids. RLMT may control transport behavior that cannot be explained by advection and dispersion. We present data from a pilot-scale ASR study in Charleston, South Carolina, and develop a three-dimensional finite-difference model to evaluate the impact of RLMT processes on ASR efficiency. The modeling shows that RLMT can explain a rebound in salinity during fresh water storage in a brackish aquifer. Multicycle model results show low efficiencies over one to three ASR cycles due to RLMT degrading water quality during storage; efficiencies can evolve and improve markedly, however, over multiple cycles, even exceeding efficiencies generated by advection-dispersion only models. For an idealized ASR model where RLMT is active, our simulations show a discrete range of diffusive length scales over which the viability of ASR schemes in brackish aquifers would be hindered.  相似文献   
286.
Fluorescent iron line profiles currently provide the best diagnostic for engine geometries of active galactic nuclei (AGN). Here we construct a method for calculating the relativistic iron line profile from an arbitrarily warped accretion disc, illuminated from above and below by hard X-ray sources. This substantially generalizes previous calculations of reprocessing by accretion discs by including non-axisymmetric effects. We include a relativistic treatment of shadowing by ray-tracing photon paths along Schwarzschild geodesics. We apply this method to two classes of warped discs, and generate a selection of resulting line profiles. New profile features include a time-varying line profile if the warp precesses about the disc, profile differences between 'twisted' and 'twist-free' warps and the possibility of steeper red and softer blue fall-offs than for flat discs. We discuss some qualitative implications of the line profiles in the context of Type I and II Seyfert AGN and other sources.  相似文献   
287.
288.
Green stormwater infrastructure implementation in urban watersheds has outpaced our understanding of practice effectiveness on streamflow response to precipitation events. Long-term monitoring of experimental suburban watersheds in Clarksburg, Maryland, USA, provided an opportunity to examine changes in event-based streamflow metrics in two treatment watersheds that transitioned from agriculture to suburban development with a high density of infiltration-focused stormwater control measures (SCMs). Urban Treatment 1 has predominantly single family detached housing with 33% impervious cover and 126 SCMs. Urban Treatment 2 has a mix of single family detached and attached housing with 44% impervious cover and 219 SCMs. Differences in streamflow-event magnitude and timing were assessed using a before-after-control-reference-impact design to compare urban treatment watersheds with a forested control and an urban control with detention-focused SCMs. Streamflow and precipitation events were identified from 14 years of sub-daily monitoring data with an automated approach to characterize peak streamflow, runoff yield, runoff ratio, streamflow duration, time to peak, rise rate, and precipitation depth for each event. Results indicated that streamflow magnitude and timing were altered by urbanization in the urban treatment watersheds, even with SCMs treating 100% of the impervious area. The largest hydrologic changes were observed in streamflow magnitude metrics, with greater hydrologic change in Urban Treatment 2 compared with Urban Treatment 1. Although streamflow changes were observed in both urban treatment watersheds, SCMs were able to mitigate peak flows and runoff volumes compared with the urban control. The urban control had similar impervious cover to Urban Treatment 2, but Urban Treatment 2 had more than twice the precipitation depth needed to initiate a flow response and lower median peak flow and runoff yield for events less than 20 mm. Differences in impervious cover between the Urban Treatment watersheds appeared to be a large driver of differences in streamflow response, rather than SCM density. Overall, use of infiltration-focused SCMs implemented at a watershed-scale did provide enhanced attenuation of peak flow and runoff volumes compared to centralized-detention SCMs.  相似文献   
289.
Nonaqueous phase liquid (NAPL)‐impacted lower permeability layers in heterogeneous media are difficult to fully remediate and can act as persistent sources of groundwater contamination through diffusive emissions to transmissive aquifer zones. This work investigated the benefits of partial remediation involving treatment focused near the high‐low permeability interface, with the performance metric being emissions reduction. A sequential base‐activated persulfate (S2O8 2?) delivery treatment strategy was studied in this work, involving 13–14 d deliveries of 10% w/w sodium persulfate (Na2S2O8) and 14–28 d deliveries of 19 g/L sodium hydroxide (NaOH). Treatment and control experiments were conducted in 1.2‐m wide × 1.2‐m tall × 5‐cm thick physical model tanks containing two soil layers differing in hydraulic conductivity by three orders of magnitude. The top 10 cm of the lower permeability layers contained 7400–7800 mg‐NAPL/kg‐soil; the NAPL was comprised of benzene, toluene, ethylbenzene, p‐xylene, o‐xylene, n‐propylbenzene, and 1,3,5‐trimethylbenzene (TMB) mixed in octane. Approximately 0.1 g‐Na2S2O8 was delivered per cm2‐interface area over 13–14 d. The S2O8 2? and SO4 2? concentration profiles suggest higher oxidant reaction rates when NaOH is delivered prior to, rather than after Na2S2O8. After 264 d and two treatments, hydrocarbon emissions from the NAPL source were reduced by 60% to 73% compared to a no‐treatment control tank. The incremental benefit of the second treatment was only about 10% of the effect of the first treatment.  相似文献   
290.
Invasion percolation (IP) models of dense non‐aqueous phase liquid (DNAPL) invasion into saturated horizontal fractures typically neglect viscous and gravity forces, as it is assumed that capillarity dominates in many situations. An IP model simulating DNAPL invasion into saturated horizontal fractures was modified to include gravity as a local effect. The model was optimized using a genetic algorithm, and demonstrated that the inclusion of gravity is important for replicating the architecture of the DNAPL invasion pattern. The optimized gravity‐included simulation showed the DNAPL invasion pattern to be significantly more representative of the experimentally observed pattern (80% accuracy) than did the optimized gravity‐neglected simulation (70% accuracy). Additional simulations of DNAPL invasion in 360 randomly generated fractures were compared with and without gravity forces. These simulations showed that with increasing fracture roughness, the minimum difference between simulations with and without gravity increases to 35% for a standard deviation of the mid‐aperture elevation field (SDz) of 10 mm. Even for low roughness (SDz = 0.1 mm), the difference was as high as 30%. Furthermore, a scaled Bond Number is defined which includes data regarding DNAPL type, media type and statistical characteristics of the fracture. The value of this scaled Bond Number can be used to determine the conditions under which gravity should be considered when simulating DNAPL invasion in a macroscopically horizontal fracture. Finally, a set of equations defining the minimum and maximum absolute percentage difference between gravity‐included and gravity‐neglected simulations is presented based on the fracture and DNAPL characteristics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号