首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   17篇
测绘学   5篇
大气科学   34篇
地球物理   76篇
地质学   113篇
海洋学   24篇
天文学   44篇
综合类   1篇
自然地理   29篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   14篇
  2019年   15篇
  2018年   13篇
  2017年   23篇
  2016年   29篇
  2015年   26篇
  2014年   15篇
  2013年   23篇
  2012年   17篇
  2011年   24篇
  2010年   10篇
  2009年   19篇
  2008年   10篇
  2007年   14篇
  2006年   13篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1990年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
311.
As part of a study of the cause of solar coronal heating, we searched for high-frequency (1 Hz) intensity oscillations in coronal loops in the [Fexiv] coronal green line. We summarize results from observations made at the 3 November 1994, total solar eclipse from the International Astronomical Union site in Putre, Chile, through partly cloudy skies, and at the 26 February 1998 total solar eclipse from Nord, Aruba, through clear skies. We discuss the image reduction and analysis of two simultaneous series of coronal CCD images digitized at 10 Hz for a total time of 160 s in Chile. One series of images was taken through a filter isolating the 5303 Å[Fexiv] coronal green line and the other through a 100 Å filter in the nearby K-corona continuum. We then discuss the modifications made for the 1998 eclipse, and the image reduction and analysis for those image sequences. After standard calibrations and image alignment of both data sets, we use Fourier analysis to search in the [Fexiv] channel for intensity oscillations in loops at the base of the corona. Such oscillations in the 1-Hz range are predicted as a result of density fluctuations from the resonant absorption of MHD waves. The dissipation of a significant amount of mechanical energy from the photosphere into the corona through this mechanism could provide sufficient energy to heat the corona. At neither eclipse do we find evidence for oscillations in the [Fexiv] green line at a level greater than 2% of coronal intensity.  相似文献   
312.
The Dalton Minimum (1790–1830) was a period with reduced solar irradiance and strong volcanic eruptions. Additionally, the atmospheric CO2 concentrations started to rise from the background level of previous centuries. In this period most empirical climate reconstructions indicate a minimum in global or hemispheric temperatures. Here, we analyse several simulations starting in 1755 with the coupled atmosphere-ocean model ECHO-G driven by different forcing combinations to investigate which external forcing could have contributed most strongly to the reduced temperatures during the Dalton Minimum. Results indicate that on global and hemispheric scales, the volcanic forcing is largely responsible for the temperature drop in this period, especially during its second half, whereas changes in solar forcing and the increasing atmospheric CO2 concentrations were of minor importance. At regional scales, especially the extratropical, the impact of volcanic forcing is much less discernible due to the large regional variability, a finding that agrees with empirical temperature reconstructions.  相似文献   
313.
We investigate the evolution of seismicity within large earthquake cycles in a model of a discrete strike-slip fault in elastic solid. The model dynamics is governed by realistic boundary conditions consisting of constant velocity motion of regions around the fault, static/kinetic friction and dislocation creep along the fault, and 3D elastic stress transfer. The fault consists of brittle parts which fail during earthquakes and undergo small creep deformation between events, and aseismic creep cells which are characterized by high ongoing creep motion. This mixture of brittle and creep cells is found to generate realistic aftershock sequences which follow the modified Omori law and scale with the mainshock size. Furthermore, we find that the distribution of interevent times of the simulated earthquakes is in good agreement with observations. The temporal occurrence, however, is magnitude-dependent; in particular, the small events are clustered in time, whereas the largest earthquakes occur quasiperiodically. Averaging the seismicity before several large earthquakes, we observe an increase of activity and a broadening scaling range of magnitudes when the time of the next mainshock is approached. These results are characteristics of a critical point behavior. The presence of critical point dynamics is further supported by the evolution of the stress field in the model, which is compatible with the observation of accelerating moment release in natural fault systems.  相似文献   
314.
315.
An Empirical Orthogonal Function (EOF) variance analysis was performed to map in detail the spatiotemporal variability in individual stake mass-balances (ba) on Mittivakkat Gletscher (MG) – in a region where at present five out of ~20.000 glaciers have mass-balance observations. The EOF analysis suggested that observed ba was summarized by two modes: EOF1 and EOF2 represented 80% (significant) and 6% (insignificant) of the explained variance, respectively. EOF1 captured a decline in ba that was uniformly distributed in space at all stakes. The decline was correlated with albedo observations and air temperature observations from nearby stations. EOF2, however, described variations in ba that were heterogeneously distributed among stakes and associated with local slope and aspect. Low elevation stakes (~<400 m a.s.l.) showed relatively negative (out of phase) correlation and higher elevated stakes relatively positive (in phase) eigenvector correlation values with EOF2. Such relatively negative and positive eigenvector correlation values were present where the constituted of exposed glacier ice or snow cover, respectively. The results from this study show how EOF analyses can provide information on spatiotemporal patterns of glacier mass-balance. Understanding such detailed variabilities in mass-balance on a Greenlandic glacier is of interest because a fifth of the Arctic contribution from glaciers and ice caps to sea-level rise originates from Greenland.  相似文献   
316.
The heat waves of 2003 in Western Europe and 2010 in Russia, commonly labelled as rare climatic anomalies outside of previous experience, are often taken as harbingers of more frequent extremes in the global warming-influenced future. However, a recent reconstruction of spring–summer temperatures for WE resulted in the likelihood of significantly higher temperatures in 1540. In order to check the plausibility of this result we investigated the severity of the 1540 drought by putting forward the argument of the known soil desiccation-temperature feedback. Based on more than 300 first-hand documentary weather report sources originating from an area of 2 to 3 million km2, we show that Europe was affected by an unprecedented 11-month-long Megadrought. The estimated number of precipitation days and precipitation amount for Central and Western Europe in 1540 is significantly lower than the 100-year minima of the instrumental measurement period for spring, summer and autumn. This result is supported by independent documentary evidence about extremely low river flows and Europe-wide wild-, forest- and settlement fires. We found that an event of this severity cannot be simulated by state-of-the-art climate models.  相似文献   
317.
318.
Sediments of Lake Van, Turkey, preserve one of the most complete records of continental climate change in the Near East since the Middle Pleistocene. We used seismic reflection profiles to infer past changes in lake level and discuss potential causes related to changes in climate, volcanism, and regional tectonics since the formation of the lake ca. 600 ka ago. Lake Van’s water level ranged by as much as 600 m during the past ~600 ka. Five major lowstands occurred, at ~600, ~365–340, ~290–230, ~150–130 and ~30–14 ka. During Stage A, between about 600 and 230 ka, lake level changed dramatically, by hundreds of meters, but phases of low and high stands were separated by long time intervals. Changes in the lake level were more frequent during the past ~230 ka, but less dramatic, on the order of a few tens of meters. We identified period B1 as a time of stepwise transgressions between ~230 and 150 ka, followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise during period B2, until ~30 ka. During the past ~30 ka, a regression and a final transgression occurred, each lasting about 15 ka. The major lowstand periods in Lake Van occurred during glacial periods, suggesting climatic control on water level changes (i.e. greatly reduced precipitation led to lower lake levels). Although climate forcing was the dominant cause for dramatic water level changes in Lake Van, volcanic and tectonic forcing factors may have contributed as well. For instance, the number of distinct tephra layers, some several meters thick, increases dramatically in the uppermost ~100 m of the sediment record (i.e. the past ~230 ka), an interval that coincides largely with low-magnitude lake level fluctuations. Tectonic activity, highlighted by extensional and/or compressional faults across the basin margins, probably also affected the lake level of Lake Van in the past.  相似文献   
319.
A popular model of a cometary plasma is hydrogen (H+) with positively charged oxygen (O+) as a heavier ion component. However, the discovery of negatively charged oxygen (O?) ions enables one to model a cometary plasma as a pair-ion plasma (of O+ and O?) with hydrogen as a third ion constituent. We have, therefore, studied the stability of the ion-acoustic wave in such a pair-ion plasma with hydrogen and electrons streaming with velocities $V_{d\mathrm{H}^{+}}$ and V de , respectively, relative to the oxygen ions. We find the calculated frequency of the ion-acoustic wave with this model to be in good agreement with the observed frequencies. The ion-acoustic wave can also be driven unstable by the streaming velocity of the hydrogen ions. The growth rate increases with increasing hydrogen density $n_{\mathrm{H}^{+}}$ , and streaming velocities $V_{d\mathrm{H}^{+}}$ and V de . It, however, decreases with increasing oxygen ion densities $n_{\mathrm{O}^{+}}$ and $n_{\mathrm{O}^{-}}$ .  相似文献   
320.
We have studied the stability of the electrostatic electron cyclotron wave in a plasma composed of hydrogen, oxygen and electrons. To conform to satellite observations in the low latitude boundary layer we model both the ionic components as drifting perpendicular to the magnetic field. Expressions for the frequency and the growth rate of the wave have been derived. We find that the plasma can support electron cyclotron waves with a frequency slightly greater than the electron cyclotron frequency ω ce ; these waves can be driven unstable when the drift velocities of both the ions are greater than the phase velocity of the wave. We thus introduce another source of instability for these waves namely multiple ion beams drifting perpendicular to the magnetic field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号