首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   309篇
  免费   17篇
测绘学   5篇
大气科学   34篇
地球物理   76篇
地质学   113篇
海洋学   24篇
天文学   44篇
综合类   1篇
自然地理   29篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   14篇
  2019年   15篇
  2018年   13篇
  2017年   23篇
  2016年   29篇
  2015年   26篇
  2014年   15篇
  2013年   23篇
  2012年   17篇
  2011年   24篇
  2010年   10篇
  2009年   19篇
  2008年   10篇
  2007年   14篇
  2006年   13篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   5篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1990年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有326条查询结果,搜索用时 218 毫秒
111.
112.
Along the Nankai Trough megasplay fault off SE Japan, the effect of fluid migration on subduction-related seismogenesis and tsunamigenesis remains unresolved. To investigate the existence and role of fluid flow, a SmartPlug borehole observatory was installed at Site C0010 of the Integrated Ocean Drilling Program NanTroSEIZE Kumano transect, where a shallow branch of the fault was intersected and in situ fluid pressure monitored from August 2009 to November 2010. The tidal signal in the formation showed no phase shift relative to seafloor loading. The attenuation of 0.73 reflects the loading efficiency accurately, and enabled calculation of a formation compressibility of 1.0×10–9 Pa–1 and a hydraulic diffusivity (HD) of 1.5×10–5 m2 s–1. A similar HD is predicted by a tidal response model based on SmartPlug pressure data. By contrast, permeability measurements on intact samples from Site C0004 SE along-strike the splay fault and from Site C0006 in the frontal thrust zone were found to be similar and one magnitude smaller respectively, despite having a higher porosity. This is explained by the presence of fractures, which are covered by the larger scale of in situ measurements at Site C0010. Consequently, HD can be set to be at least 10–5 m2 s–1 for the splay fault and 10–6 m2 s–1 for the frontal thrust fault zone. Considering recent publications makes fluid flow at the splay fault unlikely, despite the presence of fractures. If the influence of fractures is limited, then processes leading to fault weakening may be enhanced.  相似文献   
113.
114.
Natural processes generate spatial fields which reflect their specific properties. In this paper the effect of the direction of processes on the resulting spatial fields is investigated. This is done by extending the concept of reversibility used for time series to space. A novel copula based measure of asymmetry is defined which is an indicator of directional dependence. Contrary to traditional geostatistics where all points separated by a vector are considered irrespective of its sign, in this study the direction of the vector is also taken into consideration, leading to differences in the dependence corresponding to the vector \({\mathbf {h}}\) and \({-}{\mathbf {h}}\). The concept of directional dependence and the corresponding measure of asymmetry are defined using spatial copulas, and are thus independent of the scale of measurement. The result is a bivariate directional third-order moment based measure which can identify the direction in which the processes generating the spatial field acted. A statistical test to find the statistical significance of the asymmetry indicating directional dependence is presented. The methodology is tested on a number of synthetic and observed cases. Precipitation and groundwater quality parameters obtained using numerical models are first investigated. Regular dense grids obtained by numerical simulations show good correspondence between properties of the modeled processes and the new measure introduced. Measured variables observed on sparse irregular networks show similar behavior to the theoretical examples. Mean flow directions in groundwater and advection directions of precipitation fields can be detected from single snapshots. As a further example, dominant wind directions in the Sahara are found by investigating the digital terrain model.  相似文献   
115.
The Central-West region of Argentina was seriously affected by a series of convective summer storms on January–February of 2013 generating many debris flows and rockfall in the Central Andes mountain regions. In particular, the unreported 8th February event caused the sad death of a 10-year-old child being completely ignored by society and local authorities. Despite this, meteorological conditions associated with this event and further episodes were rarely measured and determined mainly due to scarce meteorological stations in Andean mountain areas. In this paper, meteorological data from CMORPH algorithm and measurements of surrounding gauges were analyzed for estimating the triggering precipitation value of this event. As well, the particular debris flow channeled into the main branch of the Amarilla gully in the Agua Negra valley was geomorphologically described. The amount of precipitation associated with this debris flow was 5.5 and 13.2 mm accumulated previous to the event. This violent debris flow was generated in a talus zone in a periglacial environment located just below a covered rock glacier. However, the influence of the permafrost thawing in this process is not feasible. The altitude of the 0 °C isotherm was lower during the previous days of the event, and no monitoring on permafrost is available for this area. The volume of removed mass was estimated in 5 × 104 m3, and the mean velocity was 35 km/h. Boulders of 4 m diameter were found in the source area, while the deposit is up to 75% sandy with clasts that hardly exceed 10 cm in the alluvial fan distal part. Herein the main objective is to advice about the probable catastrophic impact of similar events in the future. These findings could be useful for hazard remediation, mitigation, and prevention plans for the Agua Negra international pass under construction.  相似文献   
116.
117.
118.
While it is well-known that texture can be used to classify very high resolution (VHR) data, the limits of its applicability have not been unequivocally specified. This study examines whether it is possible to divide satellite images into two classes associated with “low” and “high” texture values in the initial stage of processing VHR images. This approach can be effectively used in object-oriented classification. Based on the panchromatic channel of KOMPSAT-2 images from five areas of Europe, datasets with down-sampled pixel resolutions of 1, 2, 4, 8, and 16 m were prepared. These images were processed using different texture analysis techniques in order to discriminate between basic land cover classes. Results were assessed using the normalized feature space distance expressed by the Jeffries–Matusita distance. The best results were observed for images with the highest resolution processed by the Laplacian filter. Our research shows that a classification approach based on the idea of “low” and “high” textures can be effectively applied to panchromatic data with a resolution of 8 m or higher.  相似文献   
119.
Acid mine drainage (AMD) is one of the most significant environmental challenges facing the mining industry worldwide. For this reason, many methods for AMD treatment are developed, being wetlands a good option for metal elements removal from these mining effluents. The efficiency of Peruvian native plants such as Schoenoplectus californicus (S. californicus) to remove metal elements in effluents through artificial wetlands is studied. Batch removal tests are carried out with different effluents containing copper, zinc, lead, and iron. For iron-metal binary effluents, copper, zinc, and lead are removed by 82%, 75%, and 88%; while in the effluent containing all metals, the removal rate is 90% and 92% for copper and lead, respectively. According to the preliminary results, it is concluded that iron interferes more in the removal of zinc and lead than in copper from binary effluents. The use of S. californicus turns out to be an efficient, attractive, and economical alternative for the treatment of effluents contaminated with copper, zinc, lead, and iron.  相似文献   
120.
On April 29, 2017 at 0:56 UTC (2:56 local time), an MW =?2.8 earthquake struck the metropolitan area between Leipzig and Halle, Germany, near the small town of Markranstädt. The earthquake was felt within 50 km from the epicenter and reached a local intensity of I0 = IV. Already in 2015 and only 15 km northwest of the epicenter, a MW =?3.2 earthquake struck the area with a similar large felt radius and I0 = IV. More than 1.1 million people live in the region, and the unusual occurrence of the two earthquakes led to public attention, because the tectonic activity is unclear and induced earthquakes have occurred in neighboring regions. Historical earthquakes south of Leipzig had estimated magnitudes up to MW ≈?5 and coincide with NW-SE striking crustal basement faults. We use different seismological methods to analyze the two recent earthquakes and discuss them in the context of the known tectonic structures and historical seismicity. Novel stochastic full waveform simulation and inversion approaches are adapted for the application to weak, local earthquakes, to analyze mechanisms and ground motions and their relation to observed intensities. We find NW-SE striking normal faulting mechanisms for both earthquakes and centroid depths of 26 and 29 km. The earthquakes are located where faults with large vertical offsets of several hundred meters and Hercynian strike have developed since the Mesozoic. We use a stochastic full waveform simulation to explain the local peak ground velocities and calibrate the method to simulate intensities. Since the area is densely populated and has sensitive infrastructure, we simulate scenarios assuming that a 12-km long fault segment between the two recent earthquakes is ruptured and study the impact of rupture parameters on ground motions and expected damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号