首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   532篇
  免费   24篇
  国内免费   1篇
测绘学   14篇
大气科学   58篇
地球物理   108篇
地质学   168篇
海洋学   25篇
天文学   142篇
综合类   3篇
自然地理   39篇
  2023年   6篇
  2022年   4篇
  2021年   13篇
  2020年   16篇
  2019年   18篇
  2018年   20篇
  2017年   27篇
  2016年   31篇
  2015年   32篇
  2014年   23篇
  2013年   31篇
  2012年   26篇
  2011年   34篇
  2010年   26篇
  2009年   27篇
  2008年   22篇
  2007年   30篇
  2006年   23篇
  2005年   16篇
  2004年   23篇
  2003年   13篇
  2002年   15篇
  2001年   3篇
  2000年   5篇
  1999年   7篇
  1998年   3篇
  1997年   6篇
  1996年   4篇
  1995年   7篇
  1990年   2篇
  1989年   4篇
  1987年   1篇
  1986年   4篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1962年   1篇
  1961年   1篇
排序方式: 共有557条查询结果,搜索用时 31 毫秒
51.
Systematic research over years on datable horizons of lower Miocene age has led to an election of nine glauconite samples suitable for dating work. The chosen glauconites come from various regions of the tethys. Following careful sedimentological as well as stratigraphical studies the K-Ar ages of these glauconites were measured. The interpretation of the apparent ages found takes into consideration sedimentation, mineralogical quality and present knowledge of the genesis of the green glauconite pellets. The presented data allow to fix the basis of the Miocene at about 21–22 m. y. and the boundary of Aquitanian-Burdigalian at 18 m. y. The K-Ar data on glauconites presented here are in good agreement with newer measurements of other authors on high temperature minerals of the same age span.  相似文献   
52.
53.
The volume and the photosensitive area of next generation detectors of the numerous rarely occurring phenomena will greatly exceed the sizes of the current experiments. These phenomena include cosmic neutrinos, atmospheric neutrinos, long-baseline neutrino beams from accelerators, geo-neutrinos, geo-reactor neutrinos, and hypothetic proton decays. Similar requirements hold for a new type of a large scanning device for homeland security and nuclear proliferation control, and for the future widely accessible medical imaging devices. Photon detectors are the most important component of such detectors. Existing photosensors are based on vacuum tubes and dynode electron multipliers that are essentially hand-made, expensive and nearly impossible to produce in large enough quantities. Silicon detectors are too small for experiments requiring a very large photosensitive area. Our laboratory is developing novel detectors with a large photosensitive area that can be mass-produced, similar to large flat panel TV displays.  相似文献   
54.
The Huygens Probe detected dendritic drainage-like features, methane clouds and a high surface relative humidity (∼50%) on Titan in the vicinity of its landing site [Tomasko, M.G., and 39 colleagues, 2005. Nature 438, 765-778; Niemann, H.B., and 17 colleagues, 2005. Nature 438, 779-784], suggesting sources of methane that replenish this gas against photo- and charged-particle chemical loss on short (10-100) million year timescales [Atreya, S.K., Adams, E.Y., Niemann, H.B., Demick-Montelara, J.E., Owen, T.C., Fulchignoni, M., Ferri, F., Wilson, E.H., 2006. Planet. Space Sci. In press]. On the other hand, Cassini Orbiter remote sensing shows dry and even desert-like landscapes with dunes [Lorenz, R.D., and 39 colleagues, 2006a. Science 312, 724-727], some areas worked by fluvial erosion, but no large-scale bodies of liquid [Elachi, C., and 34 colleagues, 2005. Science 308, 970-974]. Either the atmospheric methane relative humidity is declining in a steady fashion over time, or the sources that maintain the relative humidity are geographically restricted, small, or hidden within the crust itself. In this paper we explore the hypothesis that the present-day methane relative humidity is maintained entirely by lakes that cover a small part of the surface area of Titan. We calculate the required minimum surface area coverage of such lakes, assess the stabilizing influence of ethane, and the implications for moist convection in the atmosphere. We show that, under Titan's surface conditions, methane evaporates rapidly enough that shorelines of any existing lakes could potentially migrate by several hundred m to tens of km per year, rates that could be detected by the Cassini orbiter. We furthermore show that the high relative humidity of methane in Titan's lower atmosphere could be maintained by evaporation from lakes covering only 0.002-0.02 of the whole surface.  相似文献   
55.
A spatially distributed, physically based, hydrologic modeling system (MIKE SHE) was applied to quantify intra‐ and inter‐annual discharge from the snow and glacierized Zackenberg River drainage basin (512 km2; 20% glacier cover) in northeast Greenland. Evolution of snow accumulation, distribution by wind‐blown snow, blowing‐snow sublimation, and snow and ice surface melt were simulated by a spatially distributed, physically based, snow‐evolution modelling system (SnowModel) and used as input to MIKE SHE. Discharge simulations were performed for three periods 1997–2001 (calibration period), 2001–2005 (validation period), and 2071–2100 (scenario period). The combination of SnowModel and MIKE SHE shows promising results; the timing and magnitude of simulated discharge were generally in accordance with observations (R2 = 0·58); however, discrepancies between simulated and observed discharge hydrographs do occur (maximum daily difference up to 44·6 m3 s?1 and up to 9% difference between observed and simulated cumulative discharge). The model does not perform well when a sudden outburst of glacial dammed water occurs, like the 2005 extreme flood event. The modelling study showed that soil processes related to yearly change in active layer depth and glacial processes (such as changes in yearly glacier area, seasonal changes in the internal glacier drainage system, and the sudden release of glacial bulk water storage) need to be determined, for example, from field studies and incorporated in the models before basin runoff can be quantified more precisely. The SnowModel and MIKE SHE model only include first‐order effects of climate change. For the period 2071–2100, future IPCC A2 and B2 climate scenarios based on the HIRHAM regional climate model and HadCM3 atmosphere–ocean general circulation model simulations indicated a mean annual Zackenberg runoff about 1·5 orders of magnitude greater (around 650 mmWE year?1) than from today 1997–2005 (around 430 mmWE year?1), mainly based on changes in negative glacier net mass balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
56.
Large expanses of linear dunes cover Titan’s equatorial regions. As the Cassini mission continues, more dune fields are becoming unveiled and examined by the microwave radar in all its modes of operation (SAR, radiometry, scatterometry, altimetry) and with an increasing variety of observational geometries. In this paper, we report on Cassini’s radar instrument observations of the dune fields mapped through May 2009 and present our key findings in terms of Titan’s geology and climate. We estimate that dune fields cover ∼12.5% of Titan’s surface, which corresponds to an area of ∼10 million km2, roughly the area of the United States. If dune sand-sized particles are mainly composed of solid organics as suggested by VIMS observations (Cassini Visual and Infrared Mapping Spectrometer) and atmospheric modeling and supported by radiometry data, dune fields are the largest known organic reservoir on Titan. Dune regions are, with the exception of the polar lakes and seas, the least reflective and most emissive features on this moon. Interestingly, we also find a latitudinal dependence in the dune field microwave properties: up to a latitude of ∼11°, dune fields tend to become less emissive and brighter as one moves northward. Above ∼11° this trend is reversed. The microwave signatures of the dune regions are thought to be primarily controlled by the interdune proportion (relative to that of the dune), roughness and degree of sand cover. In agreement with radiometry and scatterometry observations, SAR images suggest that the fraction of interdunes increases northward up to a latitude of ∼14°. In general, scattering from the subsurface (volume scattering and surface scattering from buried interfaces) makes interdunal regions brighter than the dunes. The observed latitudinal trend may therefore also be partially caused by a gradual thinning of the interdunal sand cover or surrounding sand sheets to the north, thus allowing wave penetration in the underlying substrate. Altimetry measurements over dunes have highlighted a region located in the Fensal dune field (∼5° latitude) where the icy bedrock of Titan is likely exposed within smooth interdune areas. The hemispherical assymetry of dune field properties may point to a general reduction in the availability of sediments and/or an increase in the ground humidity toward the north, which could be related to Titan’s asymmetric seasonal polar insolation. Alternatively, it may indicate that either the wind pattern or the topography is less favorable for dune formation in Titan’s northern tropics.  相似文献   
57.
We investigate the sulfate and iron oxide deposits in Ophir Chasma, Mars, based on short-wave infrared data from the Compact Reconnaissance Imaging Spectrometer for Mars - CRISM and from the Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité - OMEGA. Sulfates are detected mainly in two locations. In the valley between Ophir Mensa and the southern wall of Ophir Chasma, kieserite is found both within the slope of Ophir Mensa, and superposed on the basaltic wall of the chasm. Here, kieserite is unconformably overlain by polyhydrated sulfate deposits and iron oxides. Locally, jarosite and unidentified phases with absorptions at 2.21 μm or 2.23 μm are detected, which could be mixtures of jarosite and amorphous silica or other poorly crystalline phases.The second large sulfate-rich outcrop is found on the floor of the central valley. Although the same minerals are found here, polyhydrated sulfates, kieserite, iron oxides, and locally a possibly jarosite-bearing phase, this deposit is very distinct. It is not layered, almost horizontal, and located at a much lower elevation of below −4250 m. Kieserite superposes polyhydrated sulfate-rich deposits, and iron oxides form lags.The facies of sulfate formation remains unclear, and could be different for the two locations. A formation in a lake, playa or under a glacier is consistent with the mineralogy of the central valley and its flat, low-lying topography. This is not conceivable for the kieserite deposits observed south of Ophir Mensa. These deposits are observed over several thousands of meters of elevation, which would require a standing body of water several thousands of meters deep. This would have lead to much more pervasive sulfate deposits than observed. These deposits are therefore more consistent with evaporation of groundwater infiltrating into previously sulfate-free light-toned deposits. The overlying polyhydrated sulfates and other mineral phases are observed in outcrops on ridges along the slopes of the southern chasm wall, which are too exposed to be reached by groundwater. Here, a water supply from the atmosphere by rain, snow, fog or frost is more conceivable.  相似文献   
58.
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan’s surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan’s surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ∼350 m to ∼2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan’s surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30°), with no dunes being present above 60°. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30° and 60° north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.  相似文献   
59.
A synthetic clinopyroxene with composition LiFe3+Ge2O6, monoclinic s.g. P21/c, a = 9.8792(7), b = 8.8095(5), c = 5.3754(3) Å, β = 108.844(6)°, V = 442.75(16) Å3, has been studied by in situ low- and high-temperature single-crystal X-ray diffraction. The variation of lattice parameters and the intensity of the b-type reflections (h + k = 2n + 1, only present in the P-symmetry) with increasing temperature showed a displacive phase transition from space group P21/c to C2/c at a transition temperature T tr = 789 K, first order in character, with a sudden volume increase of 1.6% and a decrease of β by 1° at the transition. This spontaneous dilatation is reversible, shows a limited hysteresis of ±10°C, and corresponds to the vanishing of the b-type reflections, thus indicating a symmetry increase to space group C2/c. Below T tr an expansion is observed for all the cell parameters, while the β angle remained almost constant; at T > T tr the thermal volume expansion is due to dilatation of the structure in the $(\bar{1}\,0\,1) A synthetic clinopyroxene with composition LiFe3+Ge2O6, monoclinic s.g. P21/c, a = 9.8792(7), b = 8.8095(5), c = 5.3754(3) ?, β = 108.844(6)°, V = 442.75(16) ?3, has been studied by in situ low- and high-temperature single-crystal X-ray diffraction. The variation of lattice parameters and the intensity of the b-type reflections (h + k = 2n + 1, only present in the P-symmetry) with increasing temperature showed a displacive phase transition from space group P21/c to C2/c at a transition temperature T tr = 789 K, first order in character, with a sudden volume increase of 1.6% and a decrease of β by 1° at the transition. This spontaneous dilatation is reversible, shows a limited hysteresis of ±10°C, and corresponds to the vanishing of the b-type reflections, thus indicating a symmetry increase to space group C2/c. Below T tr an expansion is observed for all the cell parameters, while the β angle remained almost constant; at T > T tr the thermal volume expansion is due to dilatation of the structure in the ([`1] 0 1)(\bar{1}\,0\,1) plane, mostly along [0 1 0], and pure shear in the (0 1 0) plane due to the decrease of β. From comparison with silicate analogues, the germanate clinopyroxenes are more expansible, while the P21/c expands more than the C2/c phase. The evolution of Q 2 (calculated as the normalized intensity of b-type reflections) with T in the framework of the Landau theory has been done using a standard expression for a first order phase transition. We observe a jump of Q 02 = 0.538(2) at T tr, with T c of 481(7) K, b/a = −2,290 K, and c/a = 3,192 K, and thus far from being tri-critical point. A closely related composition (LiFe3+Si2O6) shows an equivalent phase transition at 228 K, which is very close to the tri-critical point and 561 K cooler. This result indicates that a change in the composition of tetrahedral sites can have dramatic effects on the P21/c ↔ C2/c displacive phase transition in clinopyroxenes. The major changes observed in the evolution of the crystal structure with T are observed in the M2 polyhedron, with a volume decrease by ca. 13.3%, compared to ca. 1.3% observed in the M1 polyhedron. The tetrahedra behave as rigid units with neither a significant change of volume at T > T tr (<1‰), nor a change of tilting of the basal plane. No change in coordination is observed at T > T tr in the M2 polyhedron, which remains sixfold coordinated although a strong deformation of this polyhedron is observed. This deformation is related to a strong change by 51.4° at T tr of the kinking angle (O3–O3–O3 angle) of the B-chain of tetrahedra, which switches from O-rotated to S-rotated [from 143.3(5)° to 194.7(6)°]. The A-chain is S-rotated at T < T tr [206.8(5)° at 703 K] and extends by 12° at the transition.  相似文献   
60.
Metal-rich carbonaceous CB chondrites are generally assumed to be materials accreted from the gas–dust plume formed in catastrophic collisions of planetesimals, at least one of which was differentiated into a metal core and silicate shell. Micron-sized inclusions of siliceous alkali-rich glasses associated with sulfides were found in the metal globules of the Sierra Gorda 013 (SG 013), a CBa-like chondrite. These inclusions are unusual carriers of volatile alkalis which are commonly depleted in CB chondrites. The inclusions are presented by two types: (1) Al-bearing Nb-poor glass associated with daubréelite and (2) Nb-bearing Ca,Al,Mg-poor glass associated with an unknown Na-bearing Cr-sulfide. The glass compositions do not correspond to equilibrium condensation, evaporation, or melting. The Nb-bearing glass has a superchondritic Nb/Ta ratio (31) most likely indicating the fractionation of Nb and Ta in the high-temperature gas–dust impact plume due to condensation from vapor or evaporation of precursor Nb-rich particles. The glasses are interpreted as reaction products between refractory plume condensate particles (or possibly planetary or chondritic solids) with relatively low-temperature K-Na-Si-rich gas in oxidized conditions, possibly in a common plume vapor reservoir. Compositional differences indicate that the glasses and sulfides originated from several different sources under different fO2, fS2, and T conditions and were likely combined together and transported to the metal globule formation region by material flows in the heterogeneous impact plume. The glass–sulfide particles were enclosed in the globules aggregated from smaller solid or molten metal grains. The metal globules were further melted during transport to the high-temperature plume region or by plume shockwave heating. Thus, the composition of the glasses, the host metal, and the main mass of SG 013 shows dynamic heterogeneity of physical conditions and impact plume composition after a large-scale planetesimal collision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号