首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6122篇
  免费   1164篇
  国内免费   1579篇
测绘学   344篇
大气科学   1347篇
地球物理   1736篇
地质学   2946篇
海洋学   803篇
天文学   298篇
综合类   595篇
自然地理   796篇
  2024年   20篇
  2023年   85篇
  2022年   250篇
  2021年   305篇
  2020年   209篇
  2019年   317篇
  2018年   340篇
  2017年   299篇
  2016年   345篇
  2015年   282篇
  2014年   388篇
  2013年   317篇
  2012年   373篇
  2011年   361篇
  2010年   374篇
  2009年   336篇
  2008年   344篇
  2007年   307篇
  2006年   277篇
  2005年   262篇
  2004年   208篇
  2003年   256篇
  2002年   293篇
  2001年   245篇
  2000年   248篇
  1999年   251篇
  1998年   226篇
  1997年   197篇
  1996年   176篇
  1995年   180篇
  1994年   149篇
  1993年   141篇
  1992年   107篇
  1991年   65篇
  1990年   54篇
  1989年   58篇
  1988年   55篇
  1987年   45篇
  1986年   34篇
  1985年   16篇
  1984年   14篇
  1983年   12篇
  1982年   14篇
  1981年   8篇
  1980年   7篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1958年   4篇
  1936年   1篇
排序方式: 共有8865条查询结果,搜索用时 15 毫秒
991.
The simplified macro‐equations of porous elastic media are presented based on Hickey's theory upon ignoring effects of thermomechanical coupling and fluctuations of porosity and density induced by passing waves. The macro‐equations with definite physical parameters predict two types of compressional waves (P wave) and two types of shear waves (S wave). The first types of P and S waves, similar to the fast P wave and S wave in Biot's theory, propagate with fast velocity and have relatively weak dispersion and attenuation, while the second types of waves behave as diffusive modes due to their distinct dispersion and strong attenuation. The second S wave resulting from the bulk and shear viscous loss within pore fluid is slower than the second P wave but with strong attenuation at lower frequencies. Based on the simplified porous elastic equations, the effects of petrophysical parameters (permeability, porosity, coupling density and fluid viscosity) on the velocity dispersion and attenuation of P and S waves are studied in brine‐saturated sandstone compared with the results of Biot's theory. The results show that the dispersion and attenuation of P waves in simplified theory are stronger than those of Biot's theory and appear at slightly lower frequencies because of the existence of bulk and shear viscous loss within pore fluid. The properties of the first S wave are almost consistent with the S wave in Biot's theory, while the second S wave not included in Biot's theory even dies off around its source due to its extremely strong attenuation. The permeability and porosity have an obvious impact on the velocity dispersion and attenuation of both P and S waves. Higher permeabilities make the peaks of attenuation shift towards lower frequencies. Higher porosities correspond to higher dispersion and attenuation. Moreover, the inertial coupling between fluid and solid induces weak velocity dispersion and attenuation of both P and S waves at higher frequencies, whereas the fluid viscosity dominates the dispersion and attenuation in a macroscopic porous medium. Besides, the heavy oil sand is used to investigate the influence of high viscous fluid on the dispersion and attenuation of both P and S waves. The dispersion and attenuation in heavy oil sand are stronger than those in brine‐saturated sandstone due to the considerable shear viscosity of heavy oil. Seismic properties are strongly influenced by the fluid viscosity; thus, viscosity should be included in fluid properties to explain solid–fluid combination behaviour properly.  相似文献   
992.
The Qinghai–Tibet Plateau has a vast area of approximately 70×104 km2 of alpine meadow under the impacts of soil freezing and thawing, thereby inducing intensive water erosion. Quantifying the rainfall erosion process of partially thawed soil provides the basis for model simulation of soil erosion on cold-region hillslopes. In this study, we conducted a laboratory experiment on rainfall-induced erosion of partially thawed soil slope under four slope gradients (5, 10, 15, and 20°), three rainfall intensities (30, 60, and 90 mm h−1), and three thawed soil depths (1, 2, and 10 cm). The results indicated that shallow thawed soil depth aggravated soil erosion of partially thawed soil slopes under low hydrodynamic conditions (rainfall intensity of 30 mm h−1 and slope gradient ≤ 15°), whereas it inhibited erosion under high hydrodynamic conditions (rainfall intensity ≥ 60 mm h−1 or slope gradient > 15°). Soil erosion was controlled by the thawed soil depth and runoff hydrodynamic conditions. When the sediment supply was sufficient, the shallow thawed soil depth had a higher erosion potential and a larger sediment concentration. On the contrary, when the sediment supply was insufficient, the shallow thawed soil depth resulted in lower sediment erosion and a smaller sediment concentration. The hydrodynamic runoff conditions determined whether the sediment supply was sufficient. We propose a model to predict sediment delivery under different slope gradients, rainfall intensities, and thawed soil depths. The model, with a Nash–Sutcliffe efficiency of 0.95, accurately predicted the sediment delivery under different conditions, which was helpful for quantification of the complex feedback of sediment delivery to the factors influencing rainfall erosion of partially thawed soil. This study provides valuable insights into the rainfall erosion mechanism of partially thawed soil slopes in the Qinghai–Tibet Plateau and provides a basis for further studies on soil erosion under different hydrodynamic conditions.  相似文献   
993.
The regional terrestrial water cycle is strongly altered by human activities. Among them, reservoir regulation is a way to spatially and temporally allocate water resources in a basin for multi-purposes. However, it is still not sufficiently understood how reservoir regulation modifies the regional terrestrial- and subsequently, the atmospheric water cycle. To address this question, the representation of reservoir regulation into the terrestrial component of fully coupled regional Earth system models is required. In this study, an existing process-based reservoir network module is implemented into NOAH-HMS, that is, the terrestrial component of an atmospheric–hydrologic modelling system, namely, the WRF-HMS. It allows to quantitatively differentiate role of reservoir regulation and of groundwater feedback in a simulated ground-soil-vegetation continuum. Our study focuses on the Poyang Lake basin, where the largest freshwater lake of China and reservoirs of different sizes are located. As compared to streamflow observations, the newly extended NOAH-HMS slightly improves the streamflow and streamflow duration curves simulation for the Poyang Lake basin for the period 1979–1986. The inclusion of reservoir regulation leads to major changes in the simulated groundwater recharges and evaporation from reservoirs at local scale, but has minor effects on the simulated soil moisture and surface runoff at basin scale. The performed groundwater feedback sensitivity analysis shows that the strength of the groundwater feedback is not altered by the consideration of reservoir regulation. Furthermore, both reservoir regulation and groundwater feedback modify the partitioning of the simulated evapotranspiration, thus affecting the atmospheric water cycle in the Poyang Lake region. This finding motivates future research with our extended fully coupled atmospheric–hydrologic modelling system by the community.  相似文献   
994.
The objective of the current study was to assess the contamination of potentially toxic metals (PTMs) in weathered surface sediment, along stream tributaries, and surrounding area of the river Chitral, Shyok suture zone district Chitral, Pakistan. To understand the geochemical features of 113 sediment, samples were collected from the Mirkhani and Drosh area. Then, different statistical tools including the geo-accumulation index (Igeo), cluster analysis (CA), principal component analysis (PCA), and ecological risk assessment (ERA) were used to unravel the origin, intensity, and exposure level of PTMs to control risk and restore the ecosystem within the study area. The results for the PTMs namely nickle (Ni), chromium (Cr), copper (Cu), cadmium (Cd), lead (Pb), zinc (Zn), and cobalt (Co) in Mirkhani and Drosh were in the following ranges: 10–150, 15–210, 15–250, 0.08–1.00, 10–70, 76–240 and 14–51; and 13–240, 17–210, 15–150, 0.08–0.60, 7–140, 47–150 and 13–36 mg/kg, respectively. In consequence, the potential ecological risk caused by Pb, Ni, Cu, Co, Cr, and Zn is reflected by the percentages of samples with an ecological risk index (ERI) greater than one which were 100%, 91%, 100%, 100%, 92%, and 100%, respectively. However, the overall mean decreasing order of ecological risk of PTMs in the district Chitral was Pb > Ni > Cu > Co > Cr > Zn > Cd. Moreover, the PCA yielded 78% variability which indicated that mineral prospects play an important role in the contamination of sediment. Furthermore, the mineral phases of Pb and Zn suggested supersaturation, while that for Cd revealed unsaturation. The results of Igeo, ERI, and CA indicated contamination of PTMs in the study area. The ERI value of Pb, Ni, Cu, Co, Cr, and Zn was higher than 1 suggesting an ecological risk in the study area. Moreover, the current study showed the dominance of geogenic contamination with major contributions from ultramafic rock and known mineral prospects. Therefore, contaminated sediment of the Shyok suture zone is extremely detrimental to the aquatic ecosystem of the study area.  相似文献   
995.
Risk analysis for clustered check dams due to heavy rainfall   总被引:7,自引:1,他引:6  
Check dams are commonly constructed around the world for alleviating soil erosion and preventing sedimentation of downstream rivers and reservoirs.Check dams are more vulnerable to failure due to their less stringent flood control standards compared to other dams.Determining the critical precipitation that will result in overtopping of a dam is a useful approach to assessing the risk of failure on a probabilistic basis and for providing early warning in case of an emergency.However,many check dams are built in groups,spreading in several tributaries in cascade forms,comprising a complex network.Determining the critical precipitation for dam overtopping requires a knowledge of its upstream dams on whether they survived or were overtopped during the same storm,while these upstream dams in turn need the information for their upstream dams.The current paper presents an approach of decomposing the dam cluster into(1)the heading dam,(2)border dams,and(3)intermediate dams.The algorithm begins with the border dams that have no upstream dams and proceeds with upgraded maps without the previous border dams until all the dams have been checked.It is believed that this approach is applicable for small-scale check dam systems where the time lag of flood routing can be neglected.As a pilot study,the current paper presents the analytical results for the Wangmaogou Check Dam System that has 22 dams connected in series and parallel.The algorithm clearly identified 7 surviving dams,with the remaining ones being overtopped for a storm of 179.6 mm in 12 h,which is associated with a return period of one in 200 years.  相似文献   
996.
新疆地区量规函数、台基较正值的分析计算   总被引:1,自引:0,他引:1       下载免费PDF全文
1.引言现在使用的R(△)是在原始震级基础上,由李善邦、郭履灿分别用我国的资料进行过两次修正后得到的。但是,由于地区的差异,R(△)还不能完全适合各个地区。本文的主要工作是参照文献[1]与[2]的方法,用统计方法对现使用的R_2(△)进行修正,以得到尽可能代表新疆地区区域特征的量规函数R_3(△)。此外,为了减小地壳横向非均匀性的影  相似文献   
997.
近40年来甘肃省降水的变化特征   总被引:34,自引:10,他引:24  
林纾  陆登荣 《高原气象》2004,23(6):898-904
利用1960—2003年甘肃省59个测站逐日降水资料,研究了甘肃省四季和年降水量及雨日的气候变化特征。结果表明,平均年降水量和雨日的空间分布非常相似。河西和白银市的年降水量的趋势系数为正,省内其它地区为负;河西大部和甘南部分地区的年雨日的趋势系数为正,省内其它地区为负。线性倾向估计的结果表明,年降水量线性倾向值的零线基本以黄河为界,河西在增加,河东在减少,减少最明显的区域在徽县和康县盆地;雨日增加主要在河西西部偏南地区、沿祁连山的大部分地区及临夏以及甘南等海拔相对较高的地区,中部和陇东南的雨日在减少。雨日增多的地方降水量也在增加,反之亦然。全省年降水量和年雨日在1990年代均为低谷,而在21世纪初又都有上升趋势。降水量突变在1990年代中期;雨日突变河西在1960年代后期,河东在1970年代后期和1990年代中期。冬季降水量及雨日表现全省性大范围的增加趋势,秋季降水量及雨日亦呈全省性减少趋势;而春、夏季的降水量及雨日变化趋势则是地区性的。  相似文献   
998.
999.
大尺度断层往往控制了沉积盆地的形成和油气成藏,而小尺度断层则影响着注水开发效果和剩余油分布.大尺度断层可以通过二维或三维地震资料识别,而小尺度断层的识别则特别困难.本文提出了一种基于断层分形生长模式和三维地质力学模拟相结合来确定小尺度断层的数量、发育位置和方位的方法,并根据油田开发动态资料来确定小尺度断层对注水开发和剩余油分布的影响.将地震上识别的大尺度断层引入到三维数值力学模型中,模拟大尺度断层形成时期断裂带附近的应力扰动作用,然后结合破裂准则来建立最易发生破裂的方位和最大库伦剪切应力网格,以这两套网格和断层尺度的幂律分布确定的小尺度断层数量为约束条件来确定随机模型,对小尺度断层的密度、产状和发育位置进行定量预测.研究表明:利用分形理论和三维地质力学模拟可以对大尺度断层伴生小尺度断层进行有效预测;小尺度断层对注水开发效果和剩余油分布的影响取决于小尺度断层的规模(断距)以及小尺度断层方位和注采方向的关系.  相似文献   
1000.
Gao  Ge  Wang  Ke  Zhang  Chi  Wei  Yi-Ming 《Natural Hazards》2019,95(1-2):55-72
Natural Hazards - It is crucial that the implementation of environmental regulations have a positive synergistic effect on carbon productivity growth (i.e., environmentally adjusted productivity...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号