首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2912篇
  免费   54篇
  国内免费   47篇
测绘学   71篇
大气科学   359篇
地球物理   615篇
地质学   1014篇
海洋学   155篇
天文学   650篇
综合类   15篇
自然地理   134篇
  2021年   16篇
  2020年   17篇
  2019年   16篇
  2018年   50篇
  2017年   42篇
  2016年   62篇
  2015年   36篇
  2014年   64篇
  2013年   111篇
  2012年   86篇
  2011年   119篇
  2010年   90篇
  2009年   125篇
  2008年   139篇
  2007年   115篇
  2006年   94篇
  2005年   122篇
  2004年   99篇
  2003年   83篇
  2002年   95篇
  2001年   81篇
  2000年   82篇
  1999年   91篇
  1998年   91篇
  1997年   73篇
  1996年   70篇
  1995年   69篇
  1994年   51篇
  1993年   49篇
  1992年   45篇
  1991年   56篇
  1990年   39篇
  1989年   42篇
  1988年   19篇
  1987年   31篇
  1986年   31篇
  1985年   30篇
  1984年   50篇
  1983年   30篇
  1982年   38篇
  1981年   41篇
  1980年   37篇
  1979年   33篇
  1978年   33篇
  1977年   19篇
  1976年   26篇
  1974年   29篇
  1973年   17篇
  1971年   23篇
  1970年   15篇
排序方式: 共有3013条查询结果,搜索用时 250 毫秒
121.
In 2013, Indian summer monsoon witnessed a very heavy rainfall event (>30 cm/day) over Uttarakhand in north India, claiming more than 5000 lives and property damage worth approximately 40 billion USD. This event was associated with the interaction of two synoptic systems, i.e., intensified subtropical westerly trough over north India and north-westward moving monsoon depression formed over the Bay of Bengal. The event had occurred over highly variable terrain and land surface characteristics. Although global models predicted the large scale event, they failed to predict realistic location, timing, amount, intensity and distribution of rainfall over the region. The goal of this study is to assess the impact of land state conditions in simulating this severe event using a high resolution mesoscale model. The land conditions such as multi-layer soil moisture and soil temperature fields were generated from High Resolution Land Data Assimilation (HRLDAS) modelling system. Two experiments were conducted namely, (1) CNTL (Control, without land data assimilation) and (2) LDAS, with land data assimilation (i.e., with HRLDAS-based soil moisture and temperature fields) using Weather Research and Forecasting (WRF) modelling system. Initial soil moisture correlation and root mean square error for LDAS is 0.73 and 0.05, whereas for CNTL it is 0.63 and 0.053 respectively, with a stronger heat low in LDAS. The differences in wind and moisture transport in LDAS favoured increased moisture transport from Arabian Sea through a convectively unstable region embedded within two low pressure centers over Arabian Sea and Bay of Bengal. The improvement in rainfall is significantly correlated to the persistent generation of potential vorticity (PV) in LDAS. Further, PV tendency analysis confirmed that the increased generation of PV is due to the enhanced horizontal PV advection component rather than the diabatic heating terms due to modified flow fields. These results suggest that, two different synoptic systems merged by the strong interaction of moving PV columns resulted in the strengthening and further amplification of the system over the region in LDAS. This study highlights the importance of better representation of the land surface fields for improved prediction of localized anomalous weather event over India.  相似文献   
122.
The spatial distribution of trace gases exhibit large spatial heterogeneity over the Indian region with an elevated pollution loading over densely populated Gangetic Plains (IGP). The contending role and importance of anthropogenic emissions and meteorology in deciding the trace gases level and distribution over Indian region, however, is poorly investigated. In this paper, we use an online regional chemistry transport model (WRF/Chem) to simulate the spatial distribution of trace gases over Indian region during one representative month of only three meteorological seasons namely winter, spring/summer and monsoon. The base simulation, using anthropogenic emissions from SEAC4RS inventory, is used to simulate the general meteorological conditions and the realistic spatial distribution of trace gases. A sensitivity simulation is conducted after removing the spatial heterogeneity in the anthropogenic emissions, i.e., with spatially uniform emissions to decouple the role of anthropogenic emissions and meteorology and their role in controlling the distribution of trace gases over India. The concentration levels of Ozone, CO, SO2 and NO2 were found to be lower over IGP when the emissions are uniform over India. A comparison of the base run with the sensitivity run highlights that meteorology plays a dominant role in controlling the spatial distribution of relatively longer-lived species like CO and secondary species like Ozone while short-lived species like NOX and SO2 are predominantly controlled by the spatial variability in anthropogenic emissions over the Indian region.  相似文献   
123.
124.
125.
Research was implemented from September 15 through October 4, 2011 in the Kara Sea along transects located southeastwards Novaya Zemlya, in the St. Anna Trough, the Yenisei River estuary, and the adjacent shelf. The concentration of chlorophyll a was the highest in the photic zone (0.05–2.30 mg/m3, on average, 0.80 ± 0.37 mg/m3). The maximal concentration of Chl a at most of the stations located in the water layer of 7–30 m. Integral primary production in the water column varied from 3.0 to 151.0 mg C/m2 per day, on average, 37.2 ± 36.6 mg C/m2 per day. The maximal rate of primary production at most of the stations has been observed for the surface layer of the water column. Within the upper mixed water layer, relative primary production was from 31 to 100% (on average, 77 ± 20%). The most productive zone was the waters along Yenisei transect. In the estuary and at the adjacent shelf, primary production was 50 mg C/m2 per day, exceeding the range observed for other areas by 1.5–2.0 times. The concentrations of silica and nitrogen together with light regime and water temperature were the major limiting factors affecting the primary production rate in the Kara Sea in autumn.  相似文献   
126.
To determine the long-term landscape evolution of the Albertine Rift in East Africa, low-temperature thermochronology was applied and the cooling history constrained using thermal history modelling. Acquired results reveal (1) “old” cooling ages, with predominantly Devonian to Carboniferous apatite fission-track ages, Ordovician to Silurian zircon (U–Th)/He ages and Jurassic to Cretaceous apatite (U–Th–Sm)/He ages; (2) protracted cooling histories of the western rift shoulder with major phases of exhumation in mid-Palaeozoic and Palaeogene to Neogene times; (3) low Palaeozoic and Neogene erosion rates. This indicates a long residence time of the analysed samples in the uppermost crust, with the current landscape surface at a near-surface position for hundreds of million years. Apatite He cooling ages and thermal history models indicate moderate reheating in Jurassic to Cretaceous times. Together with the cooling age distribution, a possible Albertine high with a distinct relief can be inferred that might have been a source area for the Congo Basin.  相似文献   
127.
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号