首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
地球物理   5篇
地质学   10篇
海洋学   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   3篇
  2013年   5篇
  2011年   2篇
  2010年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
Abstract

Soil erosion vulnerability and extreme rainfall characteristics over the Mediterranean semi-arid region of Tunisia are crucial input for estimation of siltation rate in artificial reservoirs. A comprehensive high-resolution database on erosive rainfall, together with siltation records for 28 small reservoirs, were analysed for this region, the Tunisian Dorsal (the easternmost part of the Atlas Mountains). The general life-span of these reservoirs is only about 14 years. Depending on the soil degradation in the different catchments, the corresponding reservoirs display a wide range of soil erosion rates. The average soil loss was 14.5 t ha?1 year?1 but some catchments display values of up to 36.4 t ha?1 year?1. The maximum 15-min duration rainfall intensity was used to determine the spatial distribution of rainfall erosivity. The northwestern parts of the Tunisian Dorsal display the most extreme rainfall erosivity. Spatial erosion patterns are to some extent similar; however, they vary greatly according to their location in the “soil degradation cycle”. This cycle determines the soil particle delivery potential of the catchment. In general, the northwestern parts of the Dorsal display modest soil erosion patterns due to the already severely degraded soil structure. Here, the soil surface is often the original bedrock. However, the greatest soil erosion occurs in the mid-eastern parts of the Dorsal, which represents the “degradation front”. The latter corresponds to the area with highest erosion, which is continuously progressing westward in the Dorsal. The large variation between the erosive rainfall events and the annual soil loss rates was explained by two important factors. The first relates to the soil degradation cycle. The second factor corresponds to the degradation front with the highest soil loss rates. At present this front is located at 300 m altitude and appears to be moving along an 80-km westward path starting from the east coast. A better understanding of the above can be used to better manage soils and soil covers in the Tunisian Dorsal area and, eventually, to decrease the soil erosion and reservoir siltation risk.

Citation Jebari, S., Berndtsson, R., Bahri, A. & Boufaroua, M. (2010) Spatial soil loss risk and reservoir siltation in semi-arid Tunisia. Hydrol. Sci. J. 55(1), 121–137.  相似文献   
12.
ABSTRACT

Climate models and hydrological parameter uncertainties were quantified and compared while assessing climate change impacts on monthly runoff and daily flow duration curve (FDC) in a Mediterranean catchment. Simulations of the Soil and Water Assessment Tool (SWAT) model using an ensemble of behavioural parameter sets derived from the Generalized Likelihood Uncertainty Estimation (GLUE) method were approximated by feed-forward artificial neural networks (FF-NN). Then, outputs of climate models were used as inputs to the FF-NN models. Subsequently, projected changes in runoff and FDC were calculated and their associated uncertainty was partitioned into climate model and hydrological parameter uncertainties. Runoff and daily discharge of the Chiba catchment were expected to decrease in response to drier and warmer climatic conditions in the 2050s. For both hydrological indicators, uncertainty magnitude increased when moving from dry to wet periods. The decomposition of uncertainty demonstrated that climate model uncertainty dominated hydrological parameter uncertainty in wet periods, whereas in dry periods hydrological parametric uncertainty became more important.
Editor M.C. Acreman; Associate editor S. Kanae  相似文献   
13.
The Wadi Mina Watershed, western area of Algeria is characterized by rare and irregular rains and a fragile and weak vegetable cover. The sediments resulting from erosion are transported and contributed to silting dam Sidi Mhamed Benaouda. The combination of the thematical maps of the various erosive factors according to the Revised Universal Soil Loss Equation (RUSLE) in SIG by ArcGIS 10.2 software provided a reliable forecast of the annual rates of soil loss by delimiting the areas prone to erosive risk in the catchment above mentioned. The estimated potential average annual soil loss is 11.2 t/ha/yr., and the potential erosion rates from recognized erosion classes ranged from 0.0 to plus 100 t/ha/yr. About 50% of the catchment area was predicted to have very low to low erosion risk, with soil loss between 0 and 7.4 t/ha/yr. Erosion risk is moderate over 13.9% of the catchment, where calculated soil loss is between 7.4 and 12 t/ha/yr. Erosion risk is high to dangerous over 36.1% of the catchment, where calculated soil loss is more than 12 t/ha/yr. According to this study, it appeared clearly that we must intervene quickly by using reliable and effective conservation techniques.  相似文献   
14.
Tunisia presents many favorable conditions for the outbreak of water erosion because of its climatic and physical characteristics. This phenomenon represents a serious threat to the natural resources of soil and water. The aim of the present study is to identify the most vulnerable areas in order to help managers implement an effective management program. Thematic layers and parameters were integrated in the InVEST (Integrated Valuation of Environmental Services and Trade-offs) SDR (Sediment Delivery Ratio). Soil loss and sediment yield were calculated by the model and compared to observed data. The Rmel river basin was divided into 17 sub-watersheds using the dam axis as the main outlet. Results reveal that approximately 60% of the basin presents soil loss more than 5 ton/ha/year. Soil erosion map demonstrates that soil erosion risk increases with increased slope gradient, especially in agricultural lands. Sub-catchment prioritizations have been fixed based on soil erosion risk. Results show that sub-catchment 16 presents the highest soil loss with a value of 65 ton/ha/year. Sub-catchment presenting high soil erosion risk needs to give a high priority in conservation planning.  相似文献   
15.
In this work, we developed a mean projection for climate change and assessed its impact on some hydro-meteorological indicators relevant to climatic condition, precipitation extremes magnitude and frequency for the Siliana catchment in Tunisia based on an ensemble of seven combinations of global circulation models (GCMs) and regional climate models (RCMs) derived from the EU-FP6 ENSEMBLES project. We performed quantile-based mapping (QM) bias correction technique of climate model projection using local observations. Because there is no warranty that the best climate model based on its performances in reproducing historic climate will be superior to other models in simulating future climate, we used the multi-model ensemble (MME) mean approach to derive a mean projection as the best guess for climate change projection for the Siliana catchment. We also quantified the uncertainty of the MME in the projected change in the selected indicators by comparing their values in the reference period (1981–2010) to these in the future period (2041–2070). Results reveal that the Siliana catchment will be prone to drier and warmer climate in the future with less rainy days for each month. The uncertainty associated with the MME projection suggests that no clear general tendency for extreme rainy days in the future is expected. These findings highlight the need to consider an ensemble of multi-climate models with an uncertainty framework if reliable climate change impact study is sought at the catchment scale.  相似文献   
16.
The Enfida aquifer system is of importance to the economic activity of the eastern center of Tunisia. The planning of a marina is likely to present a significant risk on groundwater. Classical physically based modeling is used to better understand salty water intrusion in the aquifers. The transport model (MT3DMS) is coupled with the groundwater model (Modflow). Model calibration was carried out over the period 1972–2005. Four scenarios were then simulated for a 50-year period, to assess the effects of both planned marina and future abstraction regime. We predict a rise in the groundwater salinity generated by the planned pumping infrastructure. The impact of the planned project will be observed only near the marina. However, limited measurements of transmissivity may affect the model’s results. Thus, the second part of the paper is aimed to assess the models output error due to the uncertainty in transmissivity, using a stochastic approach. Hundred realizations of a log-normal random transmissivity field had been performed. According to the most pessimistic realizations, the uncertainty may reach 49 % in the sector of an important pumping field. Accordingly, the calculated concentration may reach 6.5 g/l in 2055 instead of 3.2 g/l.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号