首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
测绘学   2篇
大气科学   12篇
地球物理   11篇
地质学   10篇
海洋学   11篇
天文学   3篇
自然地理   7篇
  2023年   1篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1992年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
51.
Geochemical processes occurring at a seawater/freshwater interface were studied in a shallow coastal siliclastic aquifer containing minor amounts of calcite. Data were collected from 106 piezometers in a 120-m transect from the coastline and landward. In the first 40 m from the coastline, a wedge of saltwater is intruding below the freshwater aquifer. The aquifer is strongly reduced with mineralization of organic matter by methanogenesis in the freshwater aquifer, and sulfate reduction dominating in the most seaward part of the saline aquifer. The spatial separation of cations in the aquifer indicated a slow freshening process where Ca2+ from freshwater displaced the marine cations Na+ and Mg2+ from the exchanger complex. The resulting loss of Ca2+ from solution decreases the saturation state for calcite and possibly causes calcite dissolution. A storm-flooding event was recorded where pulses of dense seawater sank through the fresh aquifer. As a result, the terminal electron accepting process switched from methanogenesis to sulfate reduction. The pulses of sinking seawater also triggered cation exchange reactions where Ca2+ was expelled from the exchanger by seawater Na+ and Mg2+. The released Ca2+ is being flushed from the aquifer by groundwater flow, and this export of Ca2+ will, in the long term, cause decalcification of the sediment. The water composition in the aquifer is in a transient state as the result of various processes that operate on different timescales. Oxidation of organic matter occurs continuously but at a rate decreasing on a geological time scale. The freshening of the aquifer operates on the timescale of a few years. The episodic flooding and sinking of seawater through the aquifer proceeds in the course of days to weeks, but occurs irregularly with years in between.  相似文献   
52.
The pool of iron oxides, available in sediments for reductive dissolution, is usually estimated by wet chemical extraction methods. Such methods are basically empirically defined and calibrated against various synthetic iron oxides. However, in natural sediments, iron oxides are present as part of a complex mixture of iron oxides with variable crystallinity, clays and organics etc. Such a mixture is more accurately described by a reactive continuum covering a range from highly reactive iron oxides to non-reactive iron oxide. The reactivity of the pool of iron oxides in sediment can be determined by reductive dissolution in 10 mM ascorbic acid at pH 3. Parallel dissolution experiments in HCl at pH 3 reveal the release of Fe(II) by proton assisted dissolution. The difference in Fe(II)-release between the two experiments is attributed to reductive dissolution of iron oxides and can be quantified using the rate equation J/m0 = k′(m/m0)γ, where J is the overall rate of dissolution (mol s−1), m0 the initial amount of iron oxide, k′ a rate constant (s−1), m/m0 the proportion of undissolved mineral and γ a parameter describing the change in reaction rate over time. In the Rømø aquifer, Denmark, the reduction of iron oxides is an important electron accepting process for organic matter degradation and is reflected by the steep increase in aqueous Fe2+ over depth. Sediment from the Rømø aquifer was used for reductive dissolution experiments with ascorbic acid. The rate parameters describing the reactivity of iron oxides in the sediment are in the range k′ = 7·10−6 to 1·10−3 s−1 and γ = 1 to 2.4. These values are intermediate between a synthetic 2-line ferrihydrite and a goethite. The rate constant increases by two orders of magnitude over depth suggesting an increase in iron oxide reactivity with depth. This increase was not captured by traditional oxalate and dithionite extractions.  相似文献   
53.
Many studies have shown a ‘greening of the Sahel’ on the basis of analysis of time series of satellite images and this has shown to be, at least partly, explained by changes in rainfall. In northern Burkina Faso, an area stands out as anomalous in such analysis, since it is characterized by a distinct spatial pattern and strongly dominated by negative trends in Normalized Difference Vegetation Index (NDVI). The aim of the paper is to explain this distinct pattern. When studied over the period 2000–2012, using NDVI data from the MODIS sensor the spatial pattern of NDVI trends indicates that non-climatic factors are involved. By relating NDVI trends to landscape elements and land use change we demonstrate that NDVI trends in the north-western parts of the study area are mostly related to landscape elements, while this is not the case in the south-eastern parts, where rapidly changing land use, including. expansion of irrigation, plays a major role. It is inferred that a process of increased redistribution of fine soil material, water and vegetation from plateaus and slopes to valleys, possibly related to higher grazing pressure, may provide an explanation of the observed pattern of NDVI trends. Further work will focus on testing this hypothesis.  相似文献   
54.
55.
New Tl, Pb, and Cd concentration and Tl, Pb isotope data are presented for enstatite as well as L- and LL-type ordinary chondrites, with additional Cd stable isotope results for the former. All three chondrite suites have Tl and Cd contents that vary by more than 1–2 orders of magnitude but Pb concentrations are more uniform, as a result of terrestrial Pb contamination. Model calculations based on Pb isotope compositions indicate that for more than half of the samples, more than 50% of the measured Pb contents are due to addition of modern terrestrial Pb. In part, this is responsible for the relatively young and imprecise Pb-Pb ages determined for EH, L, and LL chondrites, which are hence only of limited chronological utility. In contrast, four particularly pristine EL chondrites define a precise Pb-Pb cooling age of 4559 ± 6 Ma. The enstatite chondrites (ECs) have highly variable ε114/110Cd of between about +3 and +70 due to stable isotope fractionation from thermal and shock metamorphism. Furthermore, nearly all enstatite meteorites display ε205Tl values from −3.3 to +0.8, while a single anomalous sample is highly fractionated in both Tl and Cd isotopes. The majority of the ECs thereby define a correlation of ε205Tl with ε114/110Cd, which suggests that at least some of the Tl isotope variability reflects stable isotope fractionation rather than radiogenic ingrowth of 205Tl from 205Pb decay. Considering L chondrites, most ε205Tl values range between −4 and +1, while two outliers with ε205Tl ≤ −10 are indicative of stable isotope fractionation. Considering only those L chondrites which are least likely to feature Pb contamination or stable Tl isotope effects, the results are in accord with the former presence of live 205Pb on the parent body, with an initial 205Pb/204Pb = (1.5 ± 1.4) × 10−4, which suggests late equilibration of the Pb-Tl system 26–113 Ma after carbonaceous chondrites (CCs). The LL chondrites display highly variable ε205Tl values from −12.5 to +14.9, also indicative of stable isotope effects. However, the data for three pristine LL3/LL4 chondrites display an excellent correlation between ε205Tl and 204Pb/203Tl. This defines an initial 205Pb/204Pb of (1.4 ± 0.3) × 10−4, equivalent to a 205Pb-205Tl cooling age of 55 + 12/−24 Ma (31–67 Ma) after CCs.  相似文献   
56.
Laser ablation multi-collector mass spectrometry (LA-MC-ICP-MS) has emerged as the technique of choice for in situ measurements of Sr isotopes in geological minerals. However, the method poses analytical challenges and there is no widely adopted standardised approach to collecting these data or correcting the numerous potential isobaric inferences. Here, we outline practical analytical procedures and data reduction strategies to help establish a consistent framework for collecting and correcting Sr isotope measurements in geological materials by LA-MC-ICP-MS. We characterise a new set of plagioclase reference materials, which are available for distribution to the community, and present a new data reduction scheme for the Iolite software package to correct isobaric interferences for different materials and analytical conditions. Our tests show that a combination of Kr-baseline subtraction, Rb-peak-stripping using βRb derived from a bracketing glass reference material, and a CaCa or CaAr correction for plagioclase and CaCa or CaAr + REE2+ correction for rock glasses, yields the most accurate and precise 87Sr/86Sr measurements for these materials. Using the analytical and correction procedures outlined herein, spot analyses using a beam diameter of 100 μm or rastering with a 50–65 μm diameter beam can readily achieve < 100 ppm 2SE repeatability ("internal") precision for 87Sr/86Sr measurements for materials with < 1000 μg g-1 Sr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号