首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
地球物理   4篇
天文学   16篇
  2022年   1篇
  2012年   1篇
  2011年   9篇
  2010年   4篇
  2004年   1篇
  2001年   1篇
  1990年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
Mercury is exposed to the most dynamic heliospheric space environment of any planet in the solar system. The magnetosphere is particularly sensitive to variations in the interplanetary magnetic field (IMF), which control the intensity and geometry of the magnetospheric current systems that are the dominant source of uncertainty in determinations of the internal planetary magnetic field structure. The Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has made extensive magnetic field observations in the inner heliosphere over the heliocentric distances of Mercury's orbit, between 0.31 and 0.47 AU. In this paper, Magnetometer data from MESSENGER, obtained at rates of 2 and 20 vector samples per second, are used together with previous observations in the inner heliosphere by Helios and at Earth by the Advanced Composition Explorer, to study the characteristics of IMF variability at Mercury's orbit. Although the average IMF geometry and magnitude depend on heliocentric distance as predicted by Parker, the variability is large, comparable to the total field magnitude. Using models for the external current systems we evaluate the impact of the variability on the field near the planet and find that the large IMF fluctuations should produce variations of the magnetospheric field of up to 30% of the dipole field at 200 km altitude, corresponding to the planned periapsis of MESSENGER's orbit at Mercury. The IMF fluctuations in the frequency range are consistent with turbulence, whereas evidence for dissipation was observed for . The transition between the turbulent and dissipative regimes is indicated by a break in the power spectrum, and the frequency of this break point is proportional to the IMF magnitude.  相似文献   
12.
In 2008 the MESSENGER spacecraft made the first direct observation of Mercury's magnetosphere in the more than 30 years since the Mariner 10 encounters. During MESSENGER's first flyby on 14 January 2008, the interplanetary magnetic field (IMF) was northward immediately prior to and following MESSENGER's equatorial passage through this small magnetosphere. The Energetic Particle Spectrometer (EPS), one of two sensors on the Energetic Particle and Plasma Spectrometer instrument that responds to electrons from ∼35 keV to 1 MeV and ions from ∼35 keV to 2.75 MeV, saw no increases in particle intensity above instrumental background (∼5 particles/cm2/sr/s/keV at 45 keV) at any time during the probe's magnetospheric passage. During MESSENGER's second flyby on 6 October 2008, there was a steady southward IMF, and intense reconnection was observed between the planet's magnetic field and the IMF. However, once again EPS did not observe bursts of energetic particles similar to those reported by Mariner 10 from its March 1974 encounter. On 29 September 2009, MESSENGER flew by Mercury for the third and final time before orbit insertion in March 2011. Although a spacecraft safe-hold event stopped science measurements prior to the outbound portion of the flyby, all instruments recorded full observations until a few minutes before the closest approach. In particular, the MESSENGER Magnetometer documented several substorm-like signatures of extreme loading of Mercury's magnetotail, but again EPS measured no energetic ions or electrons above instrument background during the inbound portion of the flyby. MESSENGER's X-Ray Spectrometer (XRS) nonetheless observed photons resulting from low-energy (∼10 keV) electrons impinging on its detectors during each of the three flybys. We infer that suprathermal plasma electrons below the EPS energy threshold caused the bremsstrahlung seen by XRS. In this paper, we summarize the energetic particle observations made by EPS and XRS during MESSENGER's three Mercury flybys, and we revisit the observations reported by Mariner 10 in the context of these new results.  相似文献   
13.
The MESSENGER spacecraft flyby of Mercury on 14 January 2008 provided a new opportunity to study the intrinsic magnetic field of the innermost planet and its interaction with the solar wind. The model presented in this paper is based on the solution of the three-dimensional, bi-fluid equations for solar wind protons and electrons in the absence of mass loading. In this study we provide new estimates of Mercury’s intrinsic magnetic field and the solar wind conditions that prevailed at the time of the flyby. We show that the location of the boundary layers and the strength of the magnetic field along the spacecraft trajectory can be reproduced with a solar wind ram pressure Psw = 6.8 nPa and a planetary magnetic dipole having a magnitude of 210 RM3 − nT and an offset of 0.18 RM to the north of the equator, where RM is Mercury’s radius. Analysis of the plasma flow reveals the existence of a stable drift belt around the planet; such a belt can account for the locations of diamagnetic decreases observed by the MESSENGER Magnetometer. Moreover, we determine that the ion impact rate at the northern cusp was four times higher than at the southern cusp, a result that provides a possible explanation for the observed north-south asymmetry in exospheric sodium in the neutral tail.  相似文献   
14.
The Kelvin-Helmholtz instability is believed to be an important means for the transfer of energy, plasma, and momentum from the solar wind into planetary magnetospheres, with in situ measurements reported from Earth, Saturn, and Venus. During the first MESSENGER flyby of Mercury, three periodic rotations were observed in the magnetic field data possibly related to a Kelvin-Helmholtz wave on the dusk side magnetopause. We present an analysis of the event, along with comparisons to previous Kelvin-Helmholtz observations and an investigation of what influence finite ion gyro radius effects, believed to be of importance in the Hermean magnetosphere, may have on the instability. The wave signature does not correspond to that of typical Kelvin-Helmholtz events, and the magnetopause direction does not show any signs of major deviation from the unperturbed case. There is thus no indication of any high amplitude surface waves. On the other hand, the wave period corresponds to that expected for a Kelvin-Helmholtz wave, and as the dusk side is shown to be more stable than the dawn side, we judge the observed waves not to be fully developed Kelvin-Helmholtz waves, but they may be an initial perturbation that could cause Kelvin-Helmholtz waves further down the tail.  相似文献   
15.
The drivers (social) and pressures (physical) of marine debris have typically been examined separately. We redress this by using social and beach surveys at nine Tasmanian beaches, across three coastlines and within three categories of urbanisation, to examine whether people acknowledge that their actions contribute to the issue of marine debris, and whether these social drivers are reflected in the amount of marine debris detected on beaches. A large proportion (75%) of survey participants do not litter at beaches; with age, gender, income and residency influencing littering behaviour. Thus, participants recognise that littering at beaches is a problem. This social trend was reflected in the small amounts of debris that were detected. Furthermore, the amount of debris was not statistically influenced by the degree of beach urbanisation, the coastline sampled, or the proximity to beach access points. By linking social and physical aspects of this issue, management outcomes can be improved.  相似文献   
16.
This review paper summarizes the research of Mercury’s magnetosphere in the Post-MESSENGER era and compares its dynamics to those in other planetary magnetospheres,especially to those in Earth’s magnetosphere.This review starts by introducing the planet Mercury,including its interplanetary environment,magnetosphere,exosphere,and conducting core.The frequent and intense magnetic reconnection on the dayside magnetopause,which is represented by the flux transfer event"shower",is reviewed on how they depend on magnetosheath plasma β and magnetic shear angle across the magnetopause,followed by how it contributes to the flux circulation and magnetosphere-surface-exosphere coupling.In the next,Mercury’s magnetosphere under extreme solar events,including the core induction and the reconnection erosion on the dayside magnetosphere,as well as the responses of the nightside magnetosphere,are reviewed.Then,the dawn-dusk properties of the plasma sheet,including the features of the ions,the structure of the current sheet,and the dynamics of magnetic reconnection,are summarized.The last topic is devoted to the particle energization in Mercury’s magnetosphere,which includes the energization of the Kelvin-Helmholtz waves on the magnetopause boundaries,reconnection-generated magnetic structures,and the cross-tail electric field.In each chapter,the last section discusses the open questions related to each topic,which can be considered by the simulations and the future spacecraft mission.We end this paper by summarizing the future Bepi Colombo opportunities,which is a joint mission of ESA and JAXA and is en route to Mercury.  相似文献   
17.
A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin–Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER's rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft's magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.  相似文献   
18.
By using Tsyganenko's model for the magnetosphere's magnetic field, which links two hemispheres of the ionosphere, and adopting a practical boundary condition for the electric potential around the polar cap, we developed a new ionosphere–magnetosphere coupling model based on prairie view dynamo code (PVDC). The new model takes the variations in solar wind and interplanetary magnetic field, as well as the geomagnetic activity, into account. Rather than the previous version of PVDC that is useful only for quiet conditions, the new model enables to calculate the electric potential and currents in the ionosphere and the field-aligned current (FAC) off the ionosphere in quiet and disturbed times. Comparison of the calculated FAC with the measurements of Space Technology 5 (ST5) mission shows a good agreement.  相似文献   
19.
A small, isolated substorm with an expansion phase onset at 07:39 U.T. (±1 min) on 28 January 1983 was well observed by ground-based instrumentation as well as by low- and high-altitude spacecraft. This event period was chosen as a detailed analysis interval because of the comprehensive nature of the data coverage, and because ISEE-3 identified signatures within the distant tail (220 RE) following the substorm onset which had been interpreted as those of a plasmoid passage. In this paper we provide a comprehensive timeline of the growth, expansion, and recovery phases of the substorm. The magnetospheric energy input rates are evaluated using IMP-8 in the upstream solar wind. For the first time, DE-1 imaging sequences are used to examine auroral features during the growth and expansion phases while ISEE-3 was in the deep tail. Substorm current wedge location and expansion onset information was provided by ground-based magnetometer and geostationary orbit (particle and magnetic field) data. The plasma, energetic particle, and field signatures at ISEE-3 are considered within the framework of the near-Earth data sets. We quantitatively estimate substorm energy input and output relationships for this case and we evaluate the timing and physical dimensions of the distant tail disturbance implied by the global observations available. Overall, the present analysis provides a thorough documentation of a substorm to an unprecedented degree; most of the data support the developing paradigm of the near-Earth neutral line and plasmoid formation model. We also consider the boundary layer dynamics model of substorms as an alternative explanation of the global magnetospheric phenomena in this event, but as presented this model does not provide a superior organization of the available data sets.  相似文献   
20.
Skinning process stability of the magnetic field in homogeneous plasma is studied. A set of magnetohydrodynamic equations is used. Dependence of electrical conductivity on the plasma parameters and radiation intensity in grey-body approximation are taken into account. The investigation is carried out on the model problems in linear approximation and by means of numerical solution of MHD equations. Threshold of stability and critical gradient of magnetic field in skin-layer are obtained. The model of the phenomenon proposed in the paper indicates on overheating instability of plasma with electric current in large gradient magnetic field zones as a possible trigger mechanism of solar flare origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号