首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1433篇
  免费   64篇
  国内免费   17篇
测绘学   30篇
大气科学   163篇
地球物理   359篇
地质学   441篇
海洋学   126篇
天文学   259篇
综合类   1篇
自然地理   135篇
  2023年   7篇
  2022年   8篇
  2021年   24篇
  2020年   25篇
  2019年   21篇
  2018年   38篇
  2017年   35篇
  2016年   48篇
  2015年   32篇
  2014年   55篇
  2013年   70篇
  2012年   42篇
  2011年   82篇
  2010年   64篇
  2009年   90篇
  2008年   73篇
  2007年   67篇
  2006年   65篇
  2005年   60篇
  2004年   43篇
  2003年   66篇
  2002年   31篇
  2001年   30篇
  2000年   34篇
  1999年   24篇
  1998年   18篇
  1997年   18篇
  1996年   18篇
  1995年   16篇
  1994年   17篇
  1993年   18篇
  1992年   16篇
  1991年   14篇
  1990年   11篇
  1989年   8篇
  1988年   10篇
  1987年   13篇
  1986年   15篇
  1985年   22篇
  1984年   25篇
  1983年   25篇
  1982年   27篇
  1981年   11篇
  1980年   23篇
  1979年   14篇
  1978年   12篇
  1977年   6篇
  1975年   4篇
  1974年   5篇
  1973年   4篇
排序方式: 共有1514条查询结果,搜索用时 312 毫秒
951.
We report on strong coast effect distortions observed for broadband marine magnetotelluric (MT) data collected on the forearc offshore northeastern Japan. Eight days of horizontal electric and magnetic fields recorded at eight seafloor stations and the horizontal magnetic fields from a land remote station were processed with a robust multiple-station algorithm, yielding good MT responses and inter-station transfer functions at periods of 7–10,000 s. Transverse electric (TE) mode responses have cusps in apparent resistivity and negative phases at periods around 1000 s, while the transverse magnetic (TM) mode responses are galvanically depressed below the TE responses. An analysis of inter-station transfer functions confirms that the apparent resistivity cusps are a magnetic field, rather than electric field, phenomenon, consisting of an amplitude minimum and rapid phase change around a characteristic frequency. Poynting vectors for a TE coast effect model study illustrate that the anomalous phases are associated with energy diffusing back up to the seafloor from below, after being turned around from its usual downward propagating trajectory by inductive coupling between the conductive ocean and the resistive seafloor along the continental margin. We show that the characteristic frequency and position of the TE mode apparent resistivity cusps are determined by a relatively simple combination of the electrical resistivity of the seafloor, the depth of the ocean, and the distance from the coastline. By including coastlines and bathymetry in 2D inversion, we recover the seafloor conductivity structure along the forearc, demonstrating that broadband data can constrain the thickness of conductive forearc sediments and the underlying high resistivity associated with the mantle wedge and subducting oceanic lithosphere.  相似文献   
952.
Recent research has examined the factors controlling the geometrical configuration of bifurcations, determined the range of stability conditions for a number of bifurcation types and assessed the impact of perturbations on bifurcation evolution. However, the flow division process and the parameters that influence flow and sediment partitioning are still poorly characterized. To identify and isolate these parameters, three‐dimensional velocities were measured at 11 cross‐sections in a fixed‐walled experimental bifurcation. Water surface gradients were controlled, and systematically varied, using a weir in each distributary. As may be expected, the steepest distributary conveyed the most discharge (was dominant) while the mildest distributary conveyed the least discharge (was subordinate). A zone of water surface super‐elevation was co‐located with the bifurcation in symmetric cases or displaced into the subordinate branch in asymmetric cases. Downstream of a relatively acute‐angled bifurcation, primary velocity cores were near to the water surface and against the inner banks, with near‐bed zones of lower primary velocity at the outer banks. Downstream of an obtuse‐angled bifurcation, velocity cores were initially at the outer banks, with near‐bed zones of lower velocities at the inner banks, but patterns soon reverted to match the acute‐angled case. A single secondary flow cell was generated in each distributary, with water flowing inwards at the water surface and outwards at the bed. Circulation was relatively enhanced within the subordinate branch, which may help explain why subordinate distributaries remain open, may play a role in determining the size of commonly‐observed topographic features, and may thus exert some control on the stability of asymmetric bifurcations. Further, because larger values of circulation result from larger gradient disadvantages, the length of confluence–diffluence units in braided rivers or between diffluences within delta distributary networks may vary depending upon flow structures inherited from upstream and whether, and how, they are fed by dominant or subordinate distributaries. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
953.
Profiles of a total of 23 plagioclase crystals erupted within the 1982–1991 and 1993 flows of the Coaxial segment of the Juan de Fuca ridge, the 1996 flow of the North Gorda ridge, and from the Western Volcanic Zone of the ultra-slow spreading Gakkel Ridge, have been studied for variations in major and trace element concentrations. We derive equilibration times for the relatively rapidly diffusing Sr in mid-ocean ridge basalt (MORB) plagioclase crystals of the order of months to a few years in each case. All crystals preserve diffusive disequilibria of strontium and barium. Crystal residence times at MORB magmatic temperatures are thus significantly shorter, of the order of days to a few months at most, precluding prolonged crystal storage in axial magma chambers and instead pointing to rapid crystal growth (up to ~10−8 cm s−1) and cooling (up to ~1°C h−1) shortly prior to eruption of these samples. Growth of these crystals is therefore inferred to occur almost entirely within oceanic layer 2 during dike injection. Crystals that grew at lower crustal levels or earlier in the differentiation sequence appear to have been excluded from the erupted magmas, as might occur if most of the gabbroic rocks in oceanic layer 3 formed an interlocking crystal framework, with viscosities that are too high to carry earlier formed crystals with the melt. The vertical extent of eruptible, crystal-poor melt lenses within the gabbroic zone is constrained to ~1 m or less by considering the width of local equilibrium growth zones, equilibration times, and crystal settling velocities. This lengthscale is consistent with field evidence from ophiolites. Finally, crystal aggregates within the Gakkel ridge sample studied here are the result of synneusis within the propagating dike during melt ascent.  相似文献   
954.
Propane (C3H8) is an abundant hydrocarbon in subsurface reservoirs with significance to atmospheric chemistry and to marine biogeochemistry. The anaerobic oxidation of propane coupled to sulfate reduction may prevent sub-seafloor accumulations of propane from entering the ocean and atmosphere. Anaerobic oxidation of propane has recently been demonstrated in cultures of novel sulfate-reducing bacteria, but has not been directly demonstrated or quantified in nature. In this work we describe a method involving incubation with 13C-propane to quantify rates of anaerobic oxidation of propane in anoxic sediment, and we conclusively demonstrate the oxidation of propane under sulfidic conditions in fresh sediments of a marine hydrocarbon seep. Observed rates of anaerobic oxidation of propane adhere to first-order kinetic behavior, enabling the modification of this method for whole core rate determinations. Whole core rates in nine cores from two hydrocarbon seeps measured 0.04-2100 nmoles C3H8 cm−3 day−1 by this method. The seep persistently supplied with more propane displayed substantially higher rates of anaerobic oxidation of propane, by 1-2 orders of magnitude when averaged over the top 10-cm, suggesting the development of the microbial community is strongly modulated by the availability of propane. This work is the first to estimate rates for anaerobic oxidation of propane in any environment, and demonstrates the potential importance of the process as a filter for preventing propane from entering the ocean and atmosphere.  相似文献   
955.
956.
We review the post-glacial climate variability along the East Antarctic coastline using terrestrial and shallow marine geological records and compare these reconstructions with data from elsewhere. Nearly all East Antarctic records show a near-synchronous Early Holocene climate optimum (11.5–9 ka BP), coinciding with the deglaciation of currently ice-free regions and the optimum recorded in Antarctic ice and marine sediment cores. Shallow marine and coastal terrestrial climate anomalies appear to be out of phase after the Early Holocene warm period, and show complex regional patterns, but an overall trend of cooling in the terrestrial records. A Mid to Late Holocene warm period is present in many East Antarctic lake and shallow coastal marine records. Although there are some differences in the regional timing of this warm period, it typically occurs somewhere between 4.7 and 1 ka BP, which overlaps with a similar optimum found in Antarctic Peninsula terrestrial records. The differences in the timing of these sometimes abrupt warm events in different records and regions points to a number of mechanisms that we have yet to identify. Nearly all records show a neoglacial cooling from 2 ka BP onwards. There is no evidence along the East Antarctic coastline for an equivalent to the Northern Hemisphere Medieval Warm Period and there is only weak circumstantial evidence in a few places for a cool event crudely equivalent in time to the Northern Hemisphere's Little Ice Age. There is a need for well-dated, high resolution climate records in coastal East Antarctica and particularly in Terre Adélie, Dronning Maud Land and Enderby Land to fully understand the regional climate anomalies, the disparity between marine and terrestrial records, and to determine the significance of the heterogeneous temperature trends being measured in the Antarctic today.  相似文献   
957.
Dissolution kinetics at the aqueous solution-calcite interface at 50 °C were investigated using in situ atomic force microscopy (AFM) to reveal the influence of magnesium concentration and solution saturation state on calcite dissolution kinetics and surface morphology. Under near-equilibrium conditions, dissolved Mg2+ displayed negligible inhibitory effects on calcite dissolution even at concentrations of . Upon the introduction of , the solution saturation state with respect to calcite, , acted as a “switch” for magnesium inhibition whereby no significant changes in step kinetics were observed at Ωcalcite<0.2, whereas a sudden inhibition from Mg2+ was activated at Ωcalcite?0.2. The presence of the Ω-switch in dissolution kinetics indicates the presence of critical undersaturation in accordance with thermodynamic principles. The etch pits formed in solutions with exhibited a unique distorted rhombic profile, different from those formed in Mg-free solutions and in de-ionized water. Such unique etch pit morphology may be associated with the anisotropy in net detachment rates of counter-propagating kink sites upon the addition of Mg2+.  相似文献   
958.
Previous studies have suggested that Marine Isotope Stage (MIS) 13, recognized as atypical in many paleoclimate records, is marked by the development of anomalously strong summer monsoons in the northern tropical areas. To test this hypothesis, we performed a multi-proxy study on three marine records from the tropical Indian Ocean in order to reconstruct and analyse changes in the summer Indian monsoon winds and precipitations during MIS 13. Our data confirm the existence of a low-salinity event during MIS 13 in the equatorial Indian Ocean but we argue that this event should not be considered as “atypical”. Taking only into account a smaller precession does not make it possible to explain such precipitation episode. However, when considering also the larger obliquity in a more complete orbitally driven monsoon “model,” one can successfully explain this event. In addition, our data suggest that intense summer monsoon winds, although not atypical in strength, prevailed during MIS 13 in the western Arabian Sea. These strong monsoon winds, transporting important moisture, together with the effect of insolation and Eurasian ice sheet, are likely one of the factors responsible for the intense monsoon precipitation signal recorded in China loess, as suggested by model simulations.  相似文献   
959.
A high-resolution storm surge model of Apalachee Bay in the northeastern Gulf of Mexico is developed using an unstructured grid finite-volume coastal ocean model (FVCOM). The model is applied to the case of Hurricane Dennis (July 2005). This storm caused underpredicted severe flooding of the Apalachee Bay coastal area and upriver inland communities. Accurate resolution of complicated geometry of the coastal region and waterways in the model reveals processes responsible for the unanticipated high storm tide in the area. Model results are validated with available observations of the storm tide. Model experiments suggest that during Dennis, excessive flooding in the coastal zone and the town of St. Marks, located up the St. Marks River, was caused by additive effects of coincident high tides (~10–15% of the total sea-level rise) and a propagating shelf wave (~30%) that added to the locally wind-generated surge. Wave setup, the biggest uncertainty, is estimated on the basis of empirical and analytical relations. The Dennis case is then used to test the sensitivity of the model solution to vertical discretization. A suite of model experiments is performed with varying numbers of vertical sigma (σ) levels, with different distribution of σ-levels within the water column and a varying bottom drag coefficient. The major finding is that the storm surge solution is more sensitive to resolution within the velocity shear zone at mid-depths compared to resolution of the upper and bottom layer or values of the bottom drag coefficient.  相似文献   
960.
Radiolabelled assays and compound-specific stable isotope analysis (CSIA) were used to assess methyl tert-butyl ether (MTBE) biodegradation in an unleaded fuel plume in a UK chalk aquifer, both in the field and in laboratory microcosm experiments. The 14C-MTBE radiorespirometry studies demonstrated widespread potential for aerobic and anaerobic MTBE biodegradation in the aquifer. However, δ13C compositions of MTBE in groundwater samples from the plume showed no significant 13C enrichment that would indicate MTBE biodegradation at the field scale. Carbon isotope enrichment during MTBE biodegradation was assessed in the microcosms when dissolved O2 was not limiting, compared with low in situ concentrations (2 mg/L) in the aquifer, and in the absence of O2. The microcosm experiments showed ubiquitous potential for aerobic MTBE biodegradation in the aquifer within hundreds of days. Aerobic MTBE biodegradation in the microcosms produced an enrichment of 7‰ in the MTBE δ13C composition and an isotope enrichment factor (ε) of −1.53‰ when dissolved O2 was not limiting. However, for the low dissolved O2 concentration of up to 2 mg/L that characterizes most of the MTBE plume fringe, aerobic MTBE biodegradation produced an enrichment of 0.5-0.7‰, corresponding to an ε value of −0.22‰ to −0.24‰. No anaerobic MTBE biodegradation occurred under these experimental conditions. These results suggest the existence of a complex MTBE-biodegrading community in the aquifer, which may consist of different aerobic species competing for MTBE and dissolved O2. Under low O2 conditions, the lower fractionating species have been shown to govern overall MTBE C-isotope fractionation during biodegradation, confirming the results of previous laboratory experiments mixing pure cultures. This implies that significant aerobic MTBE biodegradation could occur under the low dissolved O2 concentration that typifies the reactive fringe zone of MTBE plumes, without producing detectable changes in the MTBE δ13C composition. This observed insensitivity of C isotope enrichment to MTBE biodegradation could lead to significant underestimation of aerobic MTBE biodegradation at field scale, with an unnecessarily pessimistic performance assessment for natural attenuation. Site-specific C isotope enrichment factors are, therefore, required to reliably quantify MTBE biodegradation, which may limit CSIA as a tool for the in situ assessment of MTBE biodegradation in groundwater using only C isotopes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号