首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   792篇
  免费   47篇
  国内免费   13篇
测绘学   14篇
大气科学   45篇
地球物理   235篇
地质学   178篇
海洋学   61篇
天文学   140篇
自然地理   179篇
  2021年   10篇
  2020年   9篇
  2019年   15篇
  2018年   15篇
  2017年   13篇
  2016年   27篇
  2015年   19篇
  2014年   17篇
  2013年   44篇
  2012年   23篇
  2011年   31篇
  2010年   19篇
  2009年   47篇
  2008年   41篇
  2007年   33篇
  2006年   31篇
  2005年   32篇
  2004年   43篇
  2003年   26篇
  2002年   39篇
  2001年   28篇
  2000年   18篇
  1999年   13篇
  1998年   21篇
  1997年   21篇
  1996年   15篇
  1995年   8篇
  1994年   12篇
  1993年   12篇
  1992年   10篇
  1991年   23篇
  1990年   7篇
  1989年   7篇
  1988年   7篇
  1987年   10篇
  1986年   5篇
  1985年   15篇
  1984年   12篇
  1983年   6篇
  1982年   10篇
  1981年   9篇
  1979年   5篇
  1978年   3篇
  1977年   9篇
  1975年   7篇
  1974年   3篇
  1973年   4篇
  1970年   3篇
  1965年   2篇
  1924年   2篇
排序方式: 共有852条查询结果,搜索用时 31 毫秒
841.
Submerged aquatic vegetation affects flow, sediment and ecological processes within rivers. Quantifying these effects is key to effective river management. Despite a wealth of research into vegetated flows, the detailed flow characteristics around real plants in natural channels are still poorly understood. Here we present a new methodology for representing vegetation patches within computational fluid dynamics (CFD) models of vegetated channels. Vegetation is represented using a Mass Flux Scaling Algorithm (MFSA) and drag term within the Reynolds‐averaged Navier–Stokes Equations, which account for the mass and momentum effects of the vegetation, respectively. The model is applied using three different grid resolutions (0.2, 0.1 and 0.05 m) using time‐averaged solution methods and compared to field data. The results show that the model reproduces the complex spatial flow heterogeneity within the channel and that increasing the resolution leads to enhanced model accuracy. Future applications of the model to the prediction of channel roughness, sedimentation and key eco‐hydraulic variables are presented, likely to be valuable for informing effective river management. © 2016 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
842.
Connectivity describes the efficiency of material transfer between geomorphic system components such as hillslopes and rivers or longitudinal segments within a river network. Representations of geomorphic systems as networks should recognize that the compartments, links, and nodes exhibit connectivity at differing scales. The historical underpinnings of connectivity in geomorphology involve management of geomorphic systems and observations linking surface processes to landform dynamics. Current work in geomorphic connectivity emphasizes hydrological, sediment, or landscape connectivity. Signatures of connectivity can be detected using diverse indicators that vary from contemporary processes to stratigraphic records or a spatial metric such as sediment yield that encompasses geomorphic processes operating over diverse time and space scales. One approach to measuring connectivity is to determine the fundamental temporal and spatial scales for the phenomenon of interest and to make measurements at a sufficiently large multiple of the fundamental scales to capture reliably a representative sample. Another approach seeks to characterize how connectivity varies with scale, by applying the same metric over a wide range of scales or using statistical measures that characterize the frequency distributions of connectivity across scales. Identifying and measuring connectivity is useful in basic and applied geomorphic research and we explore the implications of connectivity for river management. Common themes and ideas that merit further research include; increased understanding of the importance of capturing landscape heterogeneity and connectivity patterns; the potential to use graph and network theory metrics in analyzing connectivity; the need to understand which metrics best represent the physical system and its connectivity pathways, and to apply these metrics to the validation of numerical models; and the need to recognize the importance of low levels of connectivity in some situations. We emphasize the value in evaluating boundaries between components of geomorphic systems as transition zones and examining the fluxes across them to understand landscape functioning. © 2018 John Wiley & Sons, Ltd.  相似文献   
843.
Images from specially-commissioned aeroplane sorties (manned aerial vehicle, MAV), repeat unmanned aerial vehicle (UAV) surveys, and Planet CubeSat satellites are used to quantify dune and bar dynamics in the sandy braided South Saskatchewan River, Canada. Structure-from-Motion (SfM) techniques and application of a depth-brightness model are used to produce a series of Digital Surface Models (DSMs) at low and near-bankfull flows. A number of technical and image processing challenges are described that arise from the application of SfM in dry and submerged environments. A model for best practice is presented and analysis suggests a depth-brightness model approach can represent the different scales of bedforms present in sandy braided rivers with low-turbidity and shallow (< 2 m deep) water. The aerial imagery is used to quantify the spatial distribution of unit bar and dune migration rate in an 18 km reach and three ~1 km long reaches respectively. Dune and unit bar migration rates are highly variable in response to local variations in planform morphology. Sediment transport rates for dunes and unit bars, obtained by integrating migration rates (from UAV) with the volume of sediment moved (from DSMs using MAV imagery) show near-equivalence in sediment flux. Hence, reach-based sediment transport rate estimates can be derived from unit bar data alone. Moreover, it is shown that reasonable estimates of sediment transport rate can be made using just unit bar migration rates as measured from 2D imagery, including from satellite images, so long as informed assumptions are made regarding average bar shape and height. With recent availability of frequent, repeat satellite imagery, and the ease of undertaking repeat MAV and UAV surveys, for the first time, it may be possible to provide global estimates of bedload sediment flux for large or inaccessible low-turbidity rivers that currently have sparse information on bedload sediment transport rates. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
844.
Bed shear stress in open channel flows is often estimated from the logarithmic vertical velocity profile. However, most measuring devices used in the field do not allow for flow velocity to be measured very close to the bed. The lack of near-bed measurements is a critical loss of information which may affect bed shear stress estimates. Detailed velocity profiles obtained from a field acoustic Doppler velocimeter over three different bed roughnesses clearly show that the inclusion of near-bed points is critical for the estimation of bed shear stress in a shallow river environment. Moreover, the results indicate that using the full flow depth instead of the bottom 20 per cent of the profile generates an underestimation of the shear stress when flow is uniform. © 1998 John Wiley & Sons, Ltd.  相似文献   
845.
This paper details and describes a suite of 143 sub-seismic-scale clastic injectites encountered within the early Cretaceous, early post-rift of the deep-lacustrine North Falkland Basin. The injectites, referred to here as the Sea Lion Injectite System, are encountered below, above and in between the hydrocarbon-bearing, deep-lacustrine turbidite sandstones of the Bleaker 30, Sea Lion North, Sea Lion, Casper and Beverley fans. Sedimentary structures are documented within the injectites including: planar laminations, mud-clast imbrication and clast alignment. Clasts align along centimetre-scale foresets formed through ripple-scale bedform migration in a hydraulically-open fracture. The style of flow within the injectite system is interpreted as initially through fluid turbulence during an open fracture phase, which was followed by a later stage where laminar flow dominated, most likely during the closing phase of the fracture system. The host rocks display evidence for ductile deformation, which along with ptygmatic folding of dykes and internally injected mud-clasts, suggests a period of injection into relatively uncompacted sediments. Evidence for brittle fracturing, in the form of stepped margins may be indicative of a separate phase of emplacement into more-compacted sediments. This variability in deformation styles is related to multi-phased injection episodes into host strata at different stages of consolidation and lithification at shallow burial depths. Injectites have been identified in four stratigraphic groupings: above the Bleaker 30 Fan and within/above the Sea Lion North Fan; within the hydrocarbon-bearing Sea Lion Fan; overlying the Sea Lion Fan; and above/below the hydrocarbon-bearing Casper and Beverley fans. This spatial association with the hydrocarbon-bearing fans of the North Falkland Basin is important, considering the ability of injectite networks to form effective fluid-flow conduits in the subsurface. Consequently, the findings of this study will improve the characterization of sub-seismic scale injectites (and therefore fluid conduits) within otherwise impermeable strata.  相似文献   
846.
Ephemeral fluvial systems are commonly associated with arid to semi-arid climates. Although their complex sedimentology and depositional settings have been described in much detail, depositional models depicting detailed lateral and vertical relationships, and interactions with coeval depositional environments, are lacking compared to well-recognized meandering and braided fluvial systems. This study critically evaluates the applicability of current models for ephemeral fluvial systems to an ancient arid fluvial example of the Lower Jurassic Kayenta Formation of the Colorado Plateau, USA. The study employs detailed sedimentary logging, palaeocurrent analysis and photogrammetric panels across the regional extent of the Kayenta. A generic model that accounts for the detailed sedimentology of a sandy arid ephemeral fluvial system (drawing upon both ancient and geomorphological studies) is developed, along with analysis of the spatial and temporal interactions with the aeolian setting. Results show that the ephemeral system is dominated by laterally and vertically amalgamated, poorly channelized to sheet-like elements, with abundant upper flow regime flat beds and high sediment load structures formed between periods of lower flow regime conditions. Through interaction with a coeval aeolian system, most of the fluvial deposits are dominated by sand-grade sediment, unlike many modern ephemeral fluvial systems that contain a high proportion of conglomeratic and/or finer grained mudstone and siltstone deposits. During dominantly fluvial deposition, high width to thickness ratios are observed for channelized and sheet-like elements. However, with increasing aridity, the aeolian environment becomes dominant and fluvial deposition is restricted to interdune corridors, resulting in lower width to thickness ratio channels dominated by flash-flood and debris-flow facies. The data presented here, coupled with modern examples of ephemeral systems and flood regimes, suggest that ephemeral flow produces and preserves distinctive sedimentological traits that can not only be recognized in outcrops, but also within core.  相似文献   
847.
Qian  W. D.  Zheng  F.  Huijia  T.  Stuart  J.  Taiju  Y. 《Geotectonics》2020,54(6):844-861
Geotectonics - It was showed that reservoir diagenetic and reservoir-forming characteristics are of great value for exploration and exploitation of conventional and unconventional reservoirs. Thus...  相似文献   
848.
849.
Gilbert deltas are now recognised as an important stratigraphic component of many extensional basins. They are remarkable due to their coarse‐grained nature, large size and steep foresets (up to 30–35°) and may exhibit a variety of slope instability features (faulting, slump scars, avalanching, etc.). They are also often closely related to major, basin‐margin normal faults. There has been considerable research interest in Gilbert deltas, partly due to their economic significance as stratigraphic traps for hydrocarbons but also due to their sensitivity to relative base level changes, giving them an important role in basin analysis. In addition to field studies, numerical modelling has also been used to simulate such deltas, with some success. However, until now, such studies have typically employed continuum numerical techniques where the basic data elements created by simulations are stratigraphic volumes or timelines and the sediments themselves have no internal properties per se and merely represent areas/volumes of introduced coarse‐grained, clastic and sedimentary material. Faulting or folding (if present) are imposed externally and do not develop (naturally) within the modelled delta body itself. Here, I present first results from a novel 2D numerical model which simulates coarse‐grained (Gilbert‐type) deltaic sedimentation in an active extensional tectonic setting undergoing a relative base level rise. Sediment is introduced as packages of discrete elements which are deposited beneath sea level, from the shoreline, upon a pre‐existing basin or delta. These elements are placed carefully and then allowed to settle onto the system. The elements representing the coarse‐grained, deltaic sediments can have an intrinsic coefficient of friction, cohesion or other material properties appropriate to the system being considered. The spatial resolution of the modelling is of the order of 15 m and topsets, foresets, bottomsets, faults, slumps and collapse structures all form naturally in the modelled system. Examples of deltas developing as a result of sediment supply from both the footwall and hanging‐wall of a normal fault, and subject to changes in fault slip rate are presented. Implications of the modelling approach, and its application and utility in basin research, are discussed.  相似文献   
850.
Regional erosion of the Rock Garden ridge top, a bathymetric high within New Zealand’s Hikurangi Subduction Margin, is likely associated with its gas hydrate system. Seismic data reveal gas pockets that appear partially trapped beneath the shallow base of gas hydrate stability. Steady-state fluid flow simulations, conducted on detailed two-dimensional geological models, reveal that anomalous fluid pressure can develop close to the sea floor in response to lower-permeability hydrate-bearing sediments and underlying gas pockets. Transient simulations indicate that large-scale cycling of fluid overpressure may occur on time scales of a few to tens of years. We predict intense regions of hydro-fracturing to preferentially develop beneath the ridge top rather than beneath the flanks, due to more pronounced overpressure generation and gas migration through hydrate-bearing sediments. Results suggest that sediment weakening and erosion of the ridge top by hydro-fracturing could be owed to fluid dynamics of the shallow gas hydrate system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号