首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   0篇
  国内免费   1篇
测绘学   10篇
大气科学   7篇
地球物理   12篇
地质学   48篇
海洋学   12篇
天文学   30篇
综合类   1篇
自然地理   1篇
  2021年   2篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   3篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2006年   4篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   3篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有121条查询结果,搜索用时 15 毫秒
101.
102.
The Jason-1 satellite was launched on 7 December 2001 with the primary objective of continuing the high accuracy time series of altimeter measurements that began with the TOPEX/Poseidon mission in 1992. To achieve this goal, it is necessary to validate the performance of the Jason-1 measurement system, and to verify that its error budget is at least at the same level as that of the TOPEX/Poseidon mission. The article reviews the main components of the Jason-1 altimetric error budget from instrument characterization to the geophysical use of the data. Using the Interim Geophysical Data Records (16DR) that were distributed to the Jason-1 Science Working Team during the verification phase of the mission, it is shown that the Jason-1 mission is performing well enough to continue studies of the large-scale features of the ocean, and especially to continue time series of mean sea-level variations with an accuracy comparable to TOPEX/Poseidon.  相似文献   
103.
One-Centimeter Orbit Determination for Jason-1: New GPS-Based Strategies   总被引:2,自引:0,他引:2  
The U.S./French Jason-1 satellite is carrying a state-of-the-art GPS receiver to support precise orbit determination (POD) requirements. The performance of the Jason-1 “BlackJack” GPS receiver was strongly reflected in early POD results from the mission, enabling radial accuracies of 1-2 cm soon after the satellite's 2001 launch. We have made further advances in the GPS-based POD for Jason-1, most notably in describing the phase center variations of the on-board GPS antenna. We have also adopted new geopotential models from the Gravity Recovery and Climate Experiment (GRACE). The new strategies have enabled us to better exploit the unique contributions of the BlackJack GPS tracking data in the POD process. Results of both internal and external (e.g., laser ranging) comparisons indicate that orbit accuracies of 1 cm (radial RMS) are being achieved for Jason-1 using GPS data alone.  相似文献   
104.
The Jason-1 Mission   总被引:1,自引:2,他引:1  
On December 7, 2001, the Jason-1 satellite was successfully launched by a Boeing Delta II rocket from the Vandenberg site in California, USA. Its main mission was to maintain the high accuracy altimeter measurements, provided since 1992 by TOPEX/Poseidon (T/P), ensuring continuity in observing and monitoring the ocean for intraseasonal to interannual changes, mean sea level, tides, and so forth. Despite four times less mass and power, the Jason-1 system has been designed to have the same performances as T/P, measuring sea surface topography at the centimeter level. This new Centre National d'Etudes Spatiales/National Aeronautics and Space Administration (CNES/NASA) mission also provides near real-time data for sea state and ocean forecast. The first 10 months of the Jason mission were dedicated to the verification of the system performance and cross-calibration with T/P measurements. A complete CALVAL plan was conducted by the Science and Project Teams of the mission based on in situ and regional experiments, global statistical approaches, and multisatellite comparisons, taking advantage of the T/P-Jason overlap during the first months of the mission. CALVAL and first science results showed that the Jason-1 performances were compliant with prelaunch specifications. This was a needed preamble before starting the routine phase of the mission in July 2003 with generation and distribution of validated geophysical data records to the whole user community.  相似文献   
105.
The Jason microwave radiometer (JMR) provides a crucial correction due to water vapor in the troposphere, and a much smaller correction due to liquid water, to the travel time of the Jason-1 altimeter radar pulse. An error of any size in the radiometer's measurement of wet path delay translates as an error of equal size in the measurement of sea surface height, the ultimate quantity that the altimetric system should yield. The estimate of globally-averaged sea surface height change associated with climate change, requires that uncertainties in the trends in such a global average be accurate to much better than the signal of 1-2 mm/yr. We first compare the JMR observations to those from the TOPEX/Poseidon radiometer (TMR) over approximately six months, since the intent of Jason is to continue the 10-year time series of precision ocean surface topography initiated by T/P. We then assess the stability of the JMR measurement by comparing its wet path delay to those of other orbiting radiometers over 22 months, specifically the Special Sensor Microwave Imager aboard the Defense Meteorological Satellite Program (DMSP-SSM/I) series of satellites, and the Tropical Rainfall Mapping Mission's Microwave Imager (TMI), as well as the European Center for Medium Range Weather Forecasting's (ECMWF) atmospheric numerical model estimate of water vapor. From the combined set, we obtain a robust assessment of the stability of JMR measurements. We find, that JMR is in remarkable agreement with TMR, only 2.5 mm longer, and 6-7 mm standard deviation on their difference in 0.5 degree averages; that JMR has experienced a globally-averaged step-function change, yielding an apparent shortening in wet path delay estimates of 4-5 mm around October 2002 (Jason cycles 28-32); that this step-function is visible only in the 23.8 GHz channel; and that the 34 GHz channel appears to drift at a rate of -0.4K/year. In addition, we find that, while in 2002 there was no evidence of sensitivity to the Jason satellite's attitude (a correlation of the wet path delay with yaw state), in 2003 there are strong (2-3 mm, up to 7 mm globally averaged) changes associated with such yaw state. These JMR issues were all found in the first 22 months of Jason's geophysical data records (GDR) data, and thus they apply to any investigations that use such data without further corrections.  相似文献   
106.
It has long been established that the ratio of total to selective extinction is anomalously large (>- 5) in certain regions of the interstellar medium. In these regions of anomalous extinction the dust grains are likely to be irregular in shape and fluffy in structure. Using discrete dipole approximation (DDA) we calculate the extinction for porous and fluffy grains. We apply DDA first to solid spheroidal particles assumed to be made of a certain (large) number of dipoles. Then we systematically reduce the number of dipoles to model the porous grains. The aggregates of these particles are suggested to form the fluffy grains. We study the extinction for these particles as a function of grain size, porosity and wavelength. We apply these calculations to interpret the observed extincttion data in the regions of star formation (e.g. the Orion complex).  相似文献   
107.
108.
We present synthesis imaging of scatter-broadening of radio sources carried out using the Very Large Array (VLA) at six radio frequencies during the period of solar minimum. Three compact radio sources were observed from 2 to 16 solar radii around the sun. The data indicate highly anisotropic scattering. The scatter-broadening was estimated from the area of the scattered image and was found to be factor of two lower and orientation of magnetic fields was closer to the radial direction. Present observations confirm the variation of scatter-broadening with solar elongation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
109.
A new and simple concept based on the idea of correcting for non-associative characteristics of (geologic) media is presented. A special form of the concept is adopted and introduced in a critical state plasticity model. An example problem of behaviour of a soil tested under triaxial conditions is included. The concept can permit a simplified treatment of non-associativeness and under certain assumptions can allow use of existing formulations of plasticity by maintaining symmetry of the associated matrices.  相似文献   
110.
A new concept based on the use of a function expressed as a (complete) polynomial expansion in terms of the three invariants of the stress tensor is proposed for deriving yield, failure and plastic potential functions for use in plasticity based constitutive laws. A mathematical interpretation and physical meaning of the proposed concept are provided by using the idea of the singular nature of constiutive matrices in incremental hypoelastic laws. It is suggested that the proposed function and (polynomial) forms of material moduli can be synonymous. A number of specialized forms of the general function are adopted and their values at failure from advanced three-dimensional tests for a number of (geological) media are evaluated. The results indicate the possibility that there exist invariant numbers associated with the functions(s) that may apply to a wide range of materials. Some ideas on implementation of the proposed concept are also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号