首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   3篇
  国内免费   1篇
大气科学   6篇
地球物理   28篇
地质学   25篇
天文学   9篇
自然地理   5篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   5篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有73条查询结果,搜索用时 140 毫秒
41.
Abstract The tectonic history of the Okcheon Metamorphic Belt (OMB) is a key to understanding the tectonic relationship between South Korea, China and Japan. The petrochemistry of 150 psammitic rocks in the OMB indicates that the depositional environment progressively deepened towards the northwest. These data, combined with the distribution pattern of oxide minerals and the abundance of carbonaceous material, support a half‐graben basin model for the OMB. Biotite and muscovite K–Ar dates from metasediments in the central OMB range from 102 to 277 Ma. K–Ar ages of 142–194 Ma are widespread throughout the area, whereas the older ages of 216–277 Ma are restricted to the metasediments of the middle part of the central OMB. The younger (Cretaceous) ages are only found in metasediments that are situated near the Cretaceous granite intrusions. The 216–277 Ma dates from weakly deformed areas represent cooling ages of M1 intermediate pressure/temperature (P/T) metamorphism. The relationship between age distribution and deformation pattern indicates that the Jurassic muscovite and biotite dates can be interpreted as complete resetting ages, caused by thermal and deformational activities associated with Jurassic granite plutonism. Well‐defined 40Ar/39Ar plateau ages of 155–169 Ma for micas from both metasediments and granitic rocks can be correlated with the main Jurassic K–Ar mica ages (149–194 Ma). U–Pb zircon dates for biotite granite from the southwest OMB are 167–169 Ma. On the basis of the predominantly Jurassic igneous and metamorphic ages and the uniformity of d002 values for carbonaceous materials in the study area, it is suggested that the OMB has undergone amphibolite facies M2 metamorphism after M1 metamorphism. This low P/T M2 regional thermal metamorphism may have been caused by the regional intrusion of Jurassic granites. The OMB may have undergone tectono‐metamorphic evolution as follows: (i) the OMB was initiated as an intraplate rift in the Neoproterozoic during break‐up of Rodinia, and may represent the extension of Huanan aulacogen within the South China block; (ii) sedimentation continued from the Neoproterozoic to the Ordovician, perhaps with several unconformities; (iii) M1 intermediate P/T metamorphism occurred during the Late Paleozoic due to compression caused by collision between the North and South China blocks in an area peripheral to the collision zone; and (iv) during the Early to Middle Jurassic, north‐westward subduction of the Farallon‐Izanagi Plate under the Asian Plate resulted in widespread intrusion of granites, which triggered M2 low P/T regional thermal metamorphism in the OMB. This event also formed the dextral Honam shear zone at the boundary between the OMB and Precambrian Yeongnam massif.  相似文献   
42.
Anomalously large chemical ranges in muscovite-paragonite and muscovite-celadonite systems are observed in white micas from the Piemonte calcschists in the Chisone valley area, internal western Alps. The petrographical and chemical observations on white mica strongly suggest that most mica crystals with high Na/K ratios in the chlorite zone are of detrital origin, and were derived from the pre-Alpine high-temperature metamorphic sequence such the Caledonian and/or Variscan. Submicroscopic muscovite (Ms) - paragonite (Pg) composite aggregates occur in the chlorite zone and their EPMA analyses give an apparent chemical composition range from Ms0.6Pg0.4 to Ms0.2Pg0.8. In the rutile zone, the paragonite content of the white micas is less than 20%, suggesting that the white micas have been homogenized during the Alpine metamorphism even if detrital white micas existed.Metamorphic mica is also very heterogeneous. The total range in Si content becomes wider with increasing of metamorphic grade: 3.22–3.39 pfu for the chlorite zone, 3.07–3.45 pfu for the chloritoid zone and 3.06–3.59 pfu for the rutile zone. This clearly indicates that the micas have experienced significant retrogressive chemical reactions during cooling and exhumations of the host schists.The detrital white mica in the chlorite zone has not reset well in its K-Ar system during the Alpine subduction-related metamorphism. The wide range of the white mica K-Ar ages from 115 to 41 Ma must be due to a mixture of various amounts of detrital white mica in the separates. This feature is also observed in the chloritoid zone though the age variation is not so large as that in the chlorite zone. In contrast, the mica in the rutile zone, which was higher than 450°C, has been reset completely during Alpine HP metamorphism.  相似文献   
43.
Abstract Middle Miocene basalts and basaltic andesites of the Matsue Formation outcrop within a 5 km radius of Matsue city in eastern Shimane Prefecture. Despite their limited outcrop and age (11.0 ± 1.5 Ma), they show a wide range in 87Sr-86Sr(0.70370–0.70593), 143Nd-144Nd(0.512904–0.512471) and large ion lithophile element (LILE) contents, but a relatively narrow range for some high field strength elements (HFSE) such as Nb and Ti. These basalts and andesites can be divided into three groups based on petrography, major element, trace element and isotope chemistry. Although one group has undergone some fractional crystallization, isotope chemistry precludes linkage of the groups by a closed-system process. Crustal contamination can explain isotope chemistry, but is not consistent with trace element variations. The most satisfactory model is eruption of two compositionally distinct magmas, with limited magma mixing and fractional crystallization. Published experimental work shows that one end-member resulted from shallow melting of upwelling mantle at ∼25 km. The simultaneous eruption of the other end member magma in the same area points towards a heterogeneous mantle. The isotopic composition of Matsue Formation basalts and andesites covers the entire range of Late Miocene mafic volcanic rocks of southwest Japan. Such gross heterogeneity developed on a local scale has implications for models that deal with regional chemical variations of mafic volcanic rocks in southwest Honshu.  相似文献   
44.
This paper describes K-Ar ages of cataclasites and fault gouges from the Akaishi Tectonic Line (ATL), central Japan. Petrological and mineralogical features of these rocks are also examined. Based on the results, we test the hypothesis that the K-Ar ages of these rocks represent the age of hydrothermal alteration associated with the fault movement. Intensity of deformation and alteration increase passing from host rock into cataclasite and finally into fault gouge. This increase corresponds to an increase of the value of crystallinity index (Kübler index) of the micaceous minerals contained in these rocks. Furthermore, the degree of rejuvention of K-Ar ages of the micaceous minerals increases in the same sense. A correlation of K-Ar ages (plotted on the y axis) versus Kübler index (plotted on the x axis) yields a concave curve asymptotically parallel with the x axis at approximately 15 Ma. This curve is interpreted to represent the mode of decrease of the relative amounts of inherited argon in the K-Ar system of the micaceous minerals, corresponding to an increase in the intensity of deformation and alteration. Inclination of the curve becomes zero if all the inherited argon is lost from the K-Ar system of the micaceous minerals. Thus, it is concluded that the hydrothermal alteration occurred at approximately 15 Ma. The strike-slip basin along the ATL formed the middle Miocene. The K-Ar dating of ATL gouges indicates that the ATL was active simultaneously with formation of the strike-slip basin along its trace during the middle Miocene.  相似文献   
45.
Welded tuffs in the Bogopol and Sijanov groups were sampled at 27 sites from 12 caldera formations in the Sikhote Alin mountain range around Kavalerovo (44.3°N, 135.0°E) for chronological and paleomagnetic studies. KAr age dates show that the welded tuffs erupted between 66 Ma and 46 Ma. All sites yield reliable paleomagnetic directions, with unblocking temperatures higher than 560°C. The high-temperature component at 12 sites and the medium-temperature component at 3 sites in the Bogopol Group show reversed polarity (D = 193.7°, I = −57.6°,95 = 8.1°). The high-temperature component at 11 sites in the Sijanov Group showed both reversed and normal polarities and its mean direction reveals no detectable deflection from north (D = −2.9°, I = 59.6°,95 = 11.2°). The combined paleomagnetic direction of the two groups yields a paleomagnetic pole of 250.5°E, 84.1°N (A95 = 8.8°), which falls near Cretaceous paleomagnetic poles from Outer Mongolia, Inner Mongolia, the North China Block and the South China Block. The Sikhote Alin area appears not to have been subjected to detectable motion with respect to East Asia since about 50 Ma. This implies that the Sikhote Alin area behaved as an integral part of East Asia during the opening of the Japan Sea at about 15 Ma. However, significant separation between the paleomagnetic poles of East Asia and Europe during the Jurassic-Paleogene implies a major relative movement between these two blocks since the Paleogene.  相似文献   
46.
Seventy muscovites from schists in the Sanbagawa terrain in central Shikoku were dated by the K-Ar method. The muscovite ages are consistently older with increasing metamorphic grade. Within the same zone the ages are significantly younger in schists which have been more severely deformed. These K-Ar age variations could be due to systematic argon depletion during deformation i.e., to the dynamic recrystallization of muscovites during ductile deformation that formed a large-scale recumbent fold during the uplift and cooling. Argon loss was greater in schists that were more extensively deformed and in the lower grade zone that experienced a longer period of low-temperature deformation than the higher grade zone. The relationships between age and grain size in a pelitic schist suggest that coarse-grained muscovites lost more argon than the finegrained ones. There was no significant resetting of ages in the vicinity of major strike-slip faults, such as the Median Tecotonic Line or near thrust faults. The combination of geochronological and geological data constrains the cooling rate of the Sanbagawa schists to 9–12° C/Ma in the oligoclase-biotite zone in central Shikoku, Japan.  相似文献   
47.
Nguyen D.  Nuong  Tetsumaru  Itaya    Hironobu  Hyodo  Kazumi  Yokoyama 《Island Arc》2009,18(2):282-292
Conglomerates of the Kuma Group, central Shikoku, southwest Japan contain Sanbagawa schist clasts with a variety of metamorphic grades and lithologies. K–Ar and 40Ar/39Ar dating of phengite show all the pelitic schist clasts from low- to high-grade zones have similar phengite ages (82–84 Ma) that are significantly older than those from the in situ Sanbagawa sequence of central Shikoku. This is because the Kuma–Sanbagawa sequence was exhumed earlier than the in situ Asemi sequence with an exhumation process intermediate between those for the Kanto Mountains and the in situ Asemi sequences. 40A/39Ar plateau ages (103 and 117 Ma) of phengite in amphibolites indicate the timing of the early stage of the exhumation of the metamorphic pile, probably close to the peak metamorphic age.  相似文献   
48.
Tetsumaru  Itaya  Hironobu  Hyodo  Tatsuki  Tsujimori  Simon  Wallis  Mutsuki  Aoya  Tetsuo  Kawakami  Chitaro  Gouzu 《Island Arc》2009,18(2):293-305
Laser step heating 40Ar/39Ar analysis of biotite and muscovite single crystals from a Barrovian type metamorphic belt in the eastern Tibetan plateau yielded consistent cooling ages of ca. 40 Ma in the sillimanite zone with peak metamorphic temperatures higher than 600°C and discordant ages from 46 to 197 Ma in the zones with lower peak temperatures. Chemical Th‐U‐Total Pb Isochron Method (CHIME) monazite (65 Ma) and sensitive high mass‐resolution ion microprobe (SHRIMP) apatite (67 Ma) dating give the age of peak metamorphism in the sillimanite zone. Moderate amounts of excess Ar shown by biotite grains with ages of 46 to 94 Ma at metamorphic grades up to the high‐grade part of the kyanite zone probably represent incomplete degassing during metamorphism. In contrast, the high‐grade part of the kyanite zone yields biotite ages of 130 to 197 Ma. The spatial distribution of these older ages in the kyanite zone along the sillimanite zone boundary suggests they reflect trapped excess argon that migrated from higher‐grade regions. The most likely source is muscovite that decomposed to form sillimanite. The zone with extreme amounts of excess argon preserves trapped remnants of an ‘excess argon wave’. We suggest this corresponds to the area where biotite cooled below its closure temperature in the presence of an elevated Ar wave. Extreme excess Ar is not recognized in muscovite suggesting that the entrapment of the argon wave by biotite took place when the rocks had cooled down to temperatures lower than the closure temperature of muscovite. The breakdown of phengite during ultrahigh‐pressure (UHP) metamorphism may be a key factor in accounting for the very old apparent ages seen in many UHP metamorphic regions. This is the first documentation of a regional Ar‐wave spatially associated with regional metamorphism. This study also implies that resetting of the Ar isotopic systems in micas can require temperatures up to 600°C; much higher than generally thought.  相似文献   
49.
It has become increasingly obvious over the past two decades that the fossiliferous strata at Fort Ternan, Kenya, are probably somewhat younger than 14 Ma, an age which has long been attached to the deposits. This realisation flows from geological and biochronological observations. In order to test the hypothesis, resampling of all the lava flows in the region of Fort Ternan was undertaken in 2003, especially those underlying the Fort Ternan Beds in the Kipchorion Gorge where the sequence is the most complete. Samples obtained from lava flows underlying and overlying the fossil beds were analysed for anorthoclase K/Ar and 40Ar/39Ar and biotite 40Ar/39Ar age determinations. The results reveal that the age of the fossiliferous sediments is ca 13.7±0.3Ma. Since Fort Ternan yielded the ‘core fauna’ that defines Faunal Set IV of the East African biochronological sequence this refinement of its age will impact on age estimates of neighbouring Faunal Sets, as well as on other faunas correlated to Fort Ternan, including those in Europe belonging to MN Zones MN 5, MN 6 and MN 7/8. To cite this article: M. Pickford et al., C. R. Geoscience 338 (2006).  相似文献   
50.
Particle-associated polycyclic aromatic hydrocarbons (PAHs) in outflow from East Asia were observed at Cape Hedo, Okinawa, Japan between 2005 and 2008. The filter samples of the total suspended particles were analyzed by means of gas chromatography-mass spectrometry. The total concentration of fourteen 3–7-ring PAHs was 0.01–24 ng m?3 (average 1.6 ng m?3). The average PAH concentration increased in the winter-spring season and decreased in the summer-fall season. The average benzo(a)pyrene to benzo(e)pyrene ratio was 0.49 in the winter-spring season and was lower than the literature values for East Asian cities in the same season. This result shows that aging of organic aerosol particles proceeds during long-range transport from East Asia. In the Asian Pacific region, these pollutants are transported from East Asia in the winter-spring season, whereas clean air mass is transported from the Pacific Ocean in the summer-fall season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号