首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   4篇
  国内免费   1篇
测绘学   12篇
大气科学   3篇
地球物理   34篇
地质学   37篇
海洋学   13篇
天文学   29篇
自然地理   3篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2013年   4篇
  2012年   5篇
  2011年   8篇
  2010年   9篇
  2009年   9篇
  2008年   11篇
  2007年   9篇
  2006年   5篇
  2005年   2篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  1999年   3篇
  1998年   4篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1986年   1篇
  1979年   2篇
  1978年   2篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1964年   1篇
排序方式: 共有131条查询结果,搜索用时 714 毫秒
61.
The performance of the “version 2” Global Imager (GLI) standard atmospheric correction algorithm, which includes empirical absorptive aerosol correction and sun glint correction, was evaluated using data collected with handheld above-water SIMBADA radiometers during 23 cruises of opportunity (research vessels, merchant ships), mostly in the North Atlantic and European seas. A number of 100 match-up data sets of GLI-derived and SIMBADA-measured normalized water-leaving radiance (nL W ) and aerosol optical thickness (AOT) were sorted out, using objective selection criteria, and analyzed. The Root-Mean-Square (RMS) difference between GLI and SIMBADA nL W was about 0.32 μW/cm2/nm/sr for the 412 nm band, showing improvement by 30% in RMS difference with respect to the conventional “version 1” GLI atmospheric correction algorithm, and the mean difference (or bias) was reduced significantly. For AOT, the RMS difference was 0.1 between GLI estimates and SIMBADA measurements and the bias was small (a few 0.01), but the ?ngstr?m exponent was systematically underestimated, by 0.4 on average, suggesting a potential GLI calibration offset in the near infrared. The nL W differences were not correlated to AOT, although performance was best in very clear conditions (AOT less than 0.05 in the 865 nm band). Despite the relatively large scatter between estimated and measured nL W , the derived chlorophyll-a concentration estimates, applying the same ratio algorithm (GLI OC4V4) to GLI and SIMBADA, were consistent and highly correlated in the range of 0.05–2 μg/l. The large variability in chlorophyll-a concentration estimate for clear clean water areas (e.g. with the concentration range lower than about 0.05 μg/l) turns out to be due to the nature of the “band ratio” based in-water algorithm.  相似文献   
62.
Long-term monitoring of water quality and phytoplankton was conducted at 19 sampling stations in Harima-Nada, eastern Seto Inland Sea, Japan for 35 years from 1973 to 2007. There were two significant long-term changes, an increase in winter water temperatures of 0.042°C year?1, and a decrease in dissolved inorganic nitrogen (DIN) from about 10 μM in the 1970s to ~5 μM in the late 1990s due to the reduction in nutrient inputs. DIN concentrations and total phytoplankton cell density were both higher during the 1970s to the early 1980s and then exhibited a significant decrease in the mid 1980s and remained relatively constant thereafter. Diatoms were the dominant phytoplankton group (>90%) over the 35-year period, and there was a dramatic shift from Skeletonema dominance (~70%) to Chaetoceros in the mid 1980s. This shift in diatom species may be attributed to differences in the life cycle of Skeletonema and Chaetoceros and the response to the decrease in DIN concentration.  相似文献   
63.
The headwater catchments of the Yellow River basin generate over 35% of the basin's total stream flow and play a vital role in meeting downstream water resources requirements. In recent years the Yellow River has experienced significant changes in its hydrological regime, including an increased number of zero‐flow days. These changes have serious implications for water security and basin management. We investigated changes in stream flow regime of four headwater catchments since the 1950s. The rank‐based non‐parametric Mann–Kendall test was used to detect trends in annual stream flow. The results showed no significant trend for the period 1956 to 2000. However, change‐point analysis showed that a significant change in annual stream flow occurred around 1990, and hence the stream‐flow data can be divided into two periods: 1956–1990 and 1991–2000. There was a considerable difference in average annual stream flow between the two periods, with a maximum reduction of 51%. Wet‐season rainfall appears to be the main factor responsible for the decreasing trend in annual stream flow. Reductions in annual stream flow were associated with decreased interannual variability in stream flow. Seasonal stream flow distribution changed from bimodal to unimodal between the two periods, with winter stream flow showing a greater reduction than other seasons. Daily stream flow regime represented by flow duration curves showed that all percentile flows were decreased in the second period. The high flow index (Q5/Q50) reduced by up to 28%, whereas the reduction in the low flow index (Q95/Q50) is more dramatic, with up to 100% reduction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
64.
A reference system is a relation connecting observables and their mathematical represententions. The principle of general relativity assures that any sort of coordinate system can be used to describe physical phenomena. Thus, any reference system is only a convention, There is no absolutely true reference system. Instead, people seek for a best reference system, whose meaning may differ thus need to clarify, Taking an example from Earth rotation, we discuss how to find such a best reference system. The definition of the best system will change as scientific understandings deepen and computational environments develop. Therefore, we can not stop improving reference systems. However, when replacing an existing widely-spread system, one must take great care to minimize the inconvenience caused by its transition, especially the inconvenience which users might endure. The Standards Of Fundamental Astronomy (SOFA) project being conducted by the IAU WG on Astronomical Standards has the opportunity to ease this troublesome task. The World Wide Web (WWW) will be a main device to realize the project, namely to provide working standards including reference systems to the world.  相似文献   
65.
The pressure responses of portlandite and the isotope effect on the phase transition were investigated at room temperature from single-crystal Raman and IR spectra and from powder X-ray diffraction using diamond anvil cells under quasi-hydrostatic conditions in a helium pressure-transmitting medium. Phase transformation and subsequent peak broadening (partial amorphization) observed from the Raman and IR spectra of Ca(OH)2 occurred at lower pressures than those of Ca(OD)2. In contrast, no isotope effect was found on the volume and axial compressions observed from powder X-ray diffraction patterns. X-ray diffraction lines attributable to the high-pressure phase remained up to 28.5 GPa, suggesting no total amorphization in a helium pressure medium within the examined pressure region. These results suggest that the H–D isotope effect is engendered in the local environment surrounding H(D) atoms. Moreover, the ratio of sample-to-methanol–ethanol pressure medium (i.e., packing density) in the sample chamber had a significant effect on the increase in the half widths of the diffraction lines, even at pressures below the hydrostatic limit of the pressure medium.  相似文献   
66.
An improved cloud tracking method for deriving wind velocities from successive planetary images was developed. The new method incorporates into the traditional cross-correlation method an algorithm that corrects for erroneous cloud motion vectors by re-determining the most plausible correlation peak among all of the local maxima on the correlation surface by comparing each vector with its neighboring vectors. The newly developed method was applied to the Venusian violet images obtained by the Solid State Imaging system (SSI) onboard the Galileo spacecraft during its Venus flyby. Although the results may be biased by the choice of spatial scale of atmospheric features, the cloud tracking is the most practical mean of estimating the wind velocities with extensive spatial and temporal coverage. The two-dimensional distribution of the horizontal wind vector field over 5 days was obtained. It was found from these wind maps that the solar-fixed component in 1990 was similar to that in 1982 obtained by the Pioneer Venus orbiter. The deviation of the instantaneous zonal wind field from the solar-fixed component shows a distinct wavenumber-1 structure in the equatorial region. On the assumption that this structure is a manifestation of an equatorial Kelvin wave, the phase relationship between the zonal wind and the cloud brightness suggests a short photochemical lifetime of the violet absorber. The momentum deposition by this Kelvin wave, which is subject to radiative damping, would induce a westward mean-wind acceleration of ~0.3 m s?1 per Earth day.  相似文献   
67.
The temperature and pressure differences between Tokyo and Nagasaki were used to reconstruct past climate conditions. January and July in each available year since the 1820s were classified into several types with characteristic sea level atmospheric pressure patterns. This results in 18 years of pre-1881 data and a continuous series thereafter. The series indicate that the warming after 1900 (after the end of the so-called Little Ice Age) and again after 1960 can at least partly be attributed to an increase in the frequency of warm circulation pattern types at the expense of cold types. The difference in nature of the shifts in circulation types that occurred in the late nineteenth century compared with that in the late twentieth centuries suggests that the mechanism behind the warming in the late nineteenth century differs from that in the late twentieth century.  相似文献   
68.
Uncertainty in the estimation of hydrologic export of solutes has never been fully evaluated at the scale of a small‐watershed ecosystem. We used data from the Gomadansan Experimental Forest, Japan, Hubbard Brook Experimental Forest, USA, and Coweeta Hydrologic Laboratory, USA, to evaluate many sources of uncertainty, including the precision and accuracy of measurements, selection of models, and spatial and temporal variation. Uncertainty in the analysis of stream chemistry samples was generally small but could be large in relative terms for solutes near detection limits, as is common for ammonium and phosphate in forested catchments. Instantaneous flow deviated from the theoretical curve relating height to discharge by up to 10% at Hubbard Brook, but the resulting corrections to the theoretical curve generally amounted to <0.5% of annual flows. Calibrations were limited to low flows; uncertainties at high flows were not evaluated because of the difficulties in performing calibrations during events. However, high flows likely contribute more uncertainty to annual flows because of the greater volume of water that is exported during these events. Uncertainty in catchment area was as much as 5%, based on a comparison of digital elevation maps with ground surveys. Three different interpolation methods are used at the three sites to combine periodic chemistry samples with streamflow to calculate fluxes. The three methods differed by <5% in annual export calculations for calcium, but up to 12% for nitrate exports, when applied to a stream at Hubbard Brook for 1997–2008; nitrate has higher weekly variation at this site. Natural variation was larger than most other sources of uncertainty. Specifically, coefficients of variation across streams or across years, within site, for runoff and weighted annual concentrations of calcium, magnesium, potassium, sodium, sulphate, chloride, and silicate ranged from 5 to 50% and were even higher for nitrate. Uncertainty analysis can be used to guide efforts to improve confidence in estimated stream fluxes and also to optimize design of monitoring programmes. © 2014 The Authors. Hydrological Processes published John Wiley & Sons, Ltd.  相似文献   
69.
In pelitic schists composed mainly of quartz and albite grains, the morphology of intergranular pores, which were filled with water, was studied by transmission electron microscopy (TEM). Although some pores are defined by crystallographic planes (F-face), most of their form has an ideal shape determined by interface tensions between grains and fluid. High-resolution TEM observations demonstrate that pore-free regions at grain boundaries are tight even at the nanometer scale, showing that the wetting angle is larger than 0° in this rock. The pore distribution in two-grain junctions can be compared to a "necklace microstructure" developed by instability of a fluid film along the boundary induced by microcracking. Wetting angles for pores located at grain edges of quartz and albite decrease in the order albite/albite, quartz/quartz, and quartz/albite. The quartz/quartz wetting angle in a calcite-free sample is smaller than that in a calcite-containing sample. This angle also changes due to grain misorientation. Our results confirm that solid-solid and solid-fluid interfacial energies control the geometry of intergranular fluid in natural rocks.  相似文献   
70.
Synthetic clinoenstatite (MgSiO3) has been converted to a single phase with the perovskite structure in complete reactions at approx. 300 kbar in experiments that utilize the laser-heated diamond-anvil pressure apparatus. The structure of this phase after quenching was determined by powder X-ray diffraction intensity measurement to be similar to that of the distorted rare-earth, orthoferrite-type, orthorhombic perovskites, but it is suggested that such distortion from ideal cubic perovskite would diminish at high pressure. The unit cell dimensions and density of perovskite-type MgSiO3 at ambient conditions (1 bar, 25°C) are a=4.780(1) Å, b=4.933(1) Å, c=6.902(1) Å, V=162.75 Å3, and ρ=4.098(1) g/cm3. This phase is 3.1% denser than the isochemical oxide mixture [periclase (MgO)+stishovite (SiO2)]. The small crystal-field stabilization energy of the cation site in the perovskite structure may play an important role in limiting the high-pressure stability field of perovskites that contain transition metal cations. Approximate calculations of the crystal-field effects indicate that perovskite of pure FeSiO3 composition may become stable at 400–600 kbar; pressures greater than 800 kbar would be required to stabilize CoSiO3 or NiSiO3 perovskite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号