首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7167篇
  免费   1556篇
  国内免费   2428篇
测绘学   993篇
大气科学   1384篇
地球物理   1558篇
地质学   4181篇
海洋学   1073篇
天文学   165篇
综合类   722篇
自然地理   1075篇
  2024年   55篇
  2023年   164篇
  2022年   465篇
  2021年   532篇
  2020年   432篇
  2019年   538篇
  2018年   511篇
  2017年   498篇
  2016年   470篇
  2015年   453篇
  2014年   548篇
  2013年   578篇
  2012年   561篇
  2011年   575篇
  2010年   528篇
  2009年   479篇
  2008年   465篇
  2007年   410篇
  2006年   409篇
  2005年   364篇
  2004年   265篇
  2003年   236篇
  2002年   213篇
  2001年   145篇
  2000年   151篇
  1999年   177篇
  1998年   141篇
  1997年   122篇
  1996年   92篇
  1995年   103篇
  1994年   84篇
  1993年   77篇
  1992年   75篇
  1991年   41篇
  1990年   40篇
  1989年   29篇
  1988年   28篇
  1987年   21篇
  1986年   10篇
  1985年   6篇
  1984年   7篇
  1983年   7篇
  1982年   3篇
  1981年   7篇
  1980年   5篇
  1979年   10篇
  1976年   1篇
  1958年   12篇
  1957年   1篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Guangdong is the most economically developed province in China, which is a large CO2 emitter and hence is faced with severe carbon reduction pressures. In this paper, a cost assessment methodology based on scenario analysis is presented. A CO2 source and sink database was built at Guangdong after detailed investigations on the point sources and sedimentary basins. Fifteen transport and five storage scenarios were defined and studied, respectively. Cost estimates based on these scenarios show that during its lifetime, the costs of both transport and storage depend on the amount of CO2 processed. More CO2 being processed will bring down the unit costs of both transport and storage. However, it was observed that there is a cost inflection point between the storage amount of 35.2 and 52.8 Mt/year, which means that as the storage amount increases, the storage cost will first decrease and then increase. Source region S1 in Guangdong has been recommended for an early chance of CO2 storage. Preliminary cost comparisons have shown that the results presented in this study are reasonable, but to improve the cost assessment accuracy of offshore CO2 storage, a methodology based on a CO2 storage design that can integrate local prices needs to be further developed.  相似文献   
982.
Although there has been substantial research done on adsorption of metals/metalloids by Al (oxy)hydroxides, little is known regarding the adsorption of polyaromatic hydrocarbons (PAHs) on Al (oxy)hydroxides, especially those formed in the presence of organic acid. This paper investigated the adsorption of phenanthrene on Al (oxy)hydroxides formed with initial tannate/Al molar ratios (MRs) 0, 0.001, 0.01, and 0.1 (referred to MR0, MR0.001, MR0.01, and MR0.1, respectively) through batch adsorption experiments and FTIR study. The results showed that Al (oxy)hydroxides were important sorbents for phenanthrene. The adsorption kinetic data were fitted well with the pseudo-second-order equation. According to a modified Freundlich model, the adsorption capacities of Al (oxy)hydroxides followed a descending order of MR0.1 > MR0 ≥ MR0.01 > MR0.001, which was inconsistent with the organic carbon content in the Al (oxy)hydroxides. Adsorption capacity correlated with the specific surface area, micropore area, and micropore diameter of Al (oxy)hydroxides, yet the relationships were not statistically significant (P > 0.05). FTIR results showed that physical interaction was essential in phenanthrene adsorption onto the Al (oxy)hydroxides, which could be explained by an entropy-driven process. Surface hydrophobicity of Al (oxy)hydroxides played a key role in phenanthrene adsorption. Additional π–π electron donor–acceptor interaction of phenanthrene (acting as electron donor) with aromatic ring of tannic acid (electron acceptor) could be also important in phenanthrene adsorption by high MR Al (oxy)hydroxides, yet it needs further study. The findings obtained in the present study are of fundamental significance in understanding the mechanism of immobilization of PAHs in low organic matter but oxide-rich soils.  相似文献   
983.
Large amounts of groundwater are discharged during underground mining operations. As a result, the drawdown of groundwater, known as aquifer dewatering, is common in mining areas. Because of variability in permeability between different media in mines, mine drainage occurs primarily as non-continuous flow. However, calculations of mine water yield are usually made based on the continuous flow theory, and therefore often produce erroneous results. This study predicts the water yield of a mine using the module MODFLOW and incorporating the non-continuous flow theory into the calculation. Using this method, the predicted water yield of a mine was approximately 50 % lower than that predicted using the continuous flow theory. The model also demonstrates that the rate of mine drainage varies over time; there is initially a decrease in the rate of drainage which gradually approaches a constant value. Double level flow occurs when there is non-continuous flow in continuous media, which can effectively minimize the influence of mine drainage on upper aquifers and relieve the conflict between groundwater supply and drainage in the mining area.  相似文献   
984.
Soil samples from 0 to 100 cm depth were collected in four sampling sites (Sites A, B, C and D) along a 250-m length of sampling zone from the Yellow River channel to a tidal creek in a seasonal flooding wetland of the Yellow River Delta of China in fall of 2007 and spring of 2008 to investigate spatial and seasonal distribution patterns of total phosphorous (TP) and available phosphorus (AP) and their influencing factors. Our results showed that TP contents in spring and AP contents in both seasons in surface soils increased with increasing distances away from the Yellow River channel. TP contents in surface soils (0–10 cm) followed the order Site A (698.6 mg/kg) > Site B (688.0 mg/kg) > Site C (638.8 mg/kg) > Site D (599.2 mg/kg) in fall, while Site C (699.6 mg/kg) > Site D (651.7 mg/kg) > Site B (593.6 mg/kg) > Site A (577.5 mg/kg) in spring. Generally, lower TP content (630.6 mg/kg) and higher AP level (6.2 mg/kg) in surface soils were observed in spring compared to fall (656.2 mg/kg for TP and 5.2 mg/kg for AP). Both TP and AP exhibited similar profile distribution patterns and decreased with depth along soil profiles with one or two accumulation peaks at the depth of 40–80 cm. Although the mean TP content in soil profiles was slightly higher in spring (635.7 mg/kg) than that in fall (628.0 mg/kg), the mean TP stock was obviously lower in spring (959.9 g/m2) with an obvious accumulation at the 60–80 cm soil depth compared to fall (1124.6 g/m2). Topsoil concentration factors also indicated that TP and AP had shallower distribution in soil profiles. Correlation analysis showed that AP had significant and positive correlation with these soil properties such as soil organic matter, salinity, total nitrogen and Al (p < 0.01), but TP was just significantly correlated with TN and Al (p < 0.05).  相似文献   
985.
Riparian zones act as important buffer zones for non-point source pollution, thus improving the health of aquatic ecosystems. Previous research has shown that riparian zones play an important role, and that land use has an important effect, on phosphorus (P) retention. A spatial basin-scale approach for analyzing P retention and land use effects could be important in preventing pollution in riparian zones. In this study, a riparian phosphorus cycle model based on EcoHAT was generated with algorithms from soil moisture and heat models, simplified soil and plant phosphorus models, plant growth models, and universal soil loss equations. Based on remote sensing data, model performance was enhanced for spatial and temporal prediction of P retention in the riparian zone. A modified soil and plant P model was used to simulate the soil P cycle of a riparian zone in a temperate continental monsoon climate in northern China. A laboratory experiment and a field experiment were conducted to validate the P cycle model. High coefficients of determination (R 2) between simulated and observed values indicate that the model provides reliable results. P uptake variations were the same as the net primary productivity (NPP) trends, which were affected by soil temperature and moisture in the temperate continental monsoon climate. Beginning in June, the monthly content increased, with the maximum appearing in August, when the most precipitation and the highest temperatures occur. The spatial distribution of P uptake rates from March to September showed that areas near water frequently had relatively high values from May to August, which is contrary to results obtained in March, April, and September. The P uptake amounts for different land uses changed according to expectation. The average monthly P uptake rates for farmlands and grasslands were more than those for orchards and lowlands, which had moderate P uptake rates, followed by shrubs and forests. The spatial distribution of soil erosion demonstrated that the soil erosion came primarily from high-intensity agricultural land in the western and central areas, while the northern and eastern study regions, which were less affected by human activity, experienced relatively slight soil erosion. From the point of view of P pollution prevention, the spatial structure of riparian zones and the spatial distribution of land use around the Guanting reservoir are thus not favorable.  相似文献   
986.
The main objective of this study was to apply a statistical (information value) model using geographic information system (GIS) to the Chencang District of Baoji, China. Landslide locations within the study area were identified using reports and aerial photographs, and a field survey. A total of 120 landslides were mapped, of which 84 (70 %) were randomly selected for building the landslide susceptibility model. The remaining 36 (30 %) were used for model validation. We considered a total of 10 potential factors that predispose an area to a landslide for the landslide susceptibility mapping. These included slope degree, altitude, slope aspect, plan curvature, geomorphology, distance from faults, lithology, land use, mean annual rainfall, and peak ground acceleration. Following an analysis of these factors, a landslide susceptibility map was produced using the information value model with GIS. The resulting landslide susceptibility index was divided into five classes (very high, high, moderate, low, and very low) using the natural breaks method. The corresponding distribution area percentages were 29.22, 25.14, 15.66, 15.60, and 14.38 %, respectively. Finally, landslide locations were used to validate the results of the landslide susceptibility map using areas under the curve (AUC). The AUC plot showed that the susceptibility map had a success rate of 81.79 % and a prediction accuracy of 82.95 %. Based on the results of the AUC evaluation, the landslide susceptibility map produced using the information value model exhibited good performance.  相似文献   
987.
Region warming and the resulting ongoing deglaciation have led to the formation of new glacial lakes and expansion of existing glacial lakes. For giving an overview of the distribution and expansion of glacial lakes in the Koshi River Basin (KRB) between the Central China and Nepal Himalayas in the recent 10 years, this paper aimed to analyze and assess recent spatial variability of glacial lake changes in the KRB, Central Himalayas using two inventory data of glacial lake in 2001 and 2010 in Nepal and Landsat TM/ETM+ data for the 1990s, 2000 and 2009 on the Chinese section of the KRB. The datasets show that there are 1,203 glacial lakes with a total area of 118.54 km2 in the KRB in 2009, in which 599 lakes are mapped in the Nepalese section of the KRB with a total of 25.92 km2, and 604 lakes in the Chinese section of the KRB with a total area of 92.62 km2. From 2000 to 2009, the total number of glacial lakes decreased from 1,668 to 1,203 with a reduction of 45.86 % in the KRB, whereas the total lake areas expanded by 10.60 % (i.e. 0.72 km2/a), from 111.35 to 118.54 km2 between 2000, 2001 and 2009, 2010. Especially, 17 lakes are identified as potentially dangerous glacial lakes (PDGLs) by International Centre for Integrated Mountain Development (ICIMOD) on the Nepalese section of the KRB in 2009. In the same period, 23 PDGLs are also identified on the Chinese section of the KRB and the total area increased by 77.46 % (i.e. 0.37 km2/a) from 1990 to 2010 and the expansion rate is significantly higher than 39 % (0.19 km2/a) of non-PDGLs. Therefore, there is a need for promoting the awareness of the hazard potential of glacier lakes to support proper planning of mitigation and adaptation strategies in this context.  相似文献   
988.
何宏  李红霞  张科  陶小晚  蔡春芳 《地质科学》2014,49(4):1327-1336
塔中地区奥陶系天然气成因多样;Ⅰ号坡折带中东部奥陶系天然气以高干燥系数、 甲烷同位素值重为特征;与塔深1井寒武系原油裂解气接近;应主要来自寒武系原油裂解气成因。寒武系贫H2S、 高成熟原油裂解气在喜马拉雅山期时;气侵奥陶系油气藏;得到了以下主要证据的支持: 1)天然气甲烷δ13C值大多比Chung et al.(1988)天然气模式甲烷δ13C值计算值高3‰以上;2)干燥系数与甲烷δ13C值大体上具有正相关关系;3)天然气干燥系数与H2S含量大体上具有负相关关系。这些特征表明;存在贫H2S、 相对富13C甲烷为主的干气与富H2S、 相对贫13C甲烷的湿气混合作用。奥陶系中H2S-δ34S 值为14‰~20‰;远低于中深1井寒武系原地热化学硫酸盐还原作用(TSR)成因的H2S(33‰);支持了奥陶系中H2S并不是来源于寒武系古油气藏。于是提出;来自寒武系贫H2S的干气在喜马拉雅山期对良里塔格组和鹰山组油气藏发生了气洗;油气藏的气/油比值增大、 导致了原油蜡含量增高、 甲烷δ13C值发生正偏移。  相似文献   
989.
五河杂岩的变质岩石学及P-T条件分析钻孔的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
五河杂岩是华北克拉通东部陆块东南缘最重要的岩石单元。然而,直至今日,人们对于该组杂岩一直缺乏足够的研究,特别是对于其形成的变质条件分歧较大。本文通过对蒙城南ZK02钻孔中五河杂岩的构成和地质特征详细研究表明五河杂岩分为上、下两段。上段主要为一套由云母片岩、大理岩和花岗片麻岩组成的变质表壳岩系,下段为一套基性变质岩,主要岩性为斜长角闪岩、角闪岩、石榴斜长角闪岩和少量的混合岩。同时,针对下段特征岩石(石榴斜长角闪岩),进行了较为详细的岩相学和矿物化学分析,并应用不同的温压计进行P-T条件评价和比较,结合岩相学限定和前人的研究成果,认为五河杂岩的主体普遍经历了高压角闪岩相变质作用,其温压范围为:T=671 ℃~700 ℃和P=0.82~0.95 GPa,地温梯度约为25~28 ℃/km,与典型陆壳地温梯度类似。与同邻区主要岩石单元的变质级别相比,五河杂岩应当形成于板内变质环境,并不具备造山带变质特征。  相似文献   
990.
Climate disasters are now on the rise and more likely to increase in frequency and/or severity under climate change in the future. To clearly illustrate spatial–temporal distributions of climate disasters and the response of wheat yields to disasters over the past three decades, several disaster indices including the impact of climate disasters, the sensitivity to climate disasters and the response index of wheat yield losses to climate disasters were defined and calculated. The impact and sensitivity indices were examined by the agricultural production losses due to climate disasters, and the response of wheat yields to climate disasters was assessed by wheat yield loss compared with the 5-year moving average. The results showed that the indices of climate disaster impacts and sensitivities as well as response index of wheat yields to climate disasters could represent the spatial–temporal distributions of climate disasters well in the whole China. Droughts in northern China had higher impacts and sensitivities than those in southern China during the period 1983–2008, but the impacts of floods were opposite. In northern China, although impacted area by drought was larger than that by flood, the flood sensitivities were larger than drought sensitivities when flood happened. Although drought significantly affected wheat yields in most of the regions with drier conditions during 1983–2008 in major wheat-producing regions, better management practices like irrigation and drought-tolerant cultivars applied in the Huang-Huai-Hai Plain can adapt to climate disasters especially droughts. To ensure the stability of agricultural production, future food security will need to be achieved through quantifying the relative effects of climate disasters and effective adaptation to increasingly frequent extreme climate events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号