首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
  国内免费   1篇
地球物理   6篇
地质学   19篇
海洋学   11篇
  2021年   3篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2007年   2篇
  2006年   6篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
排序方式: 共有36条查询结果,搜索用时 281 毫秒
21.
The Shanderman eclogites and related metamorphosed oceanic rocks mark the site of closure of the Palaeotethys ocean in northern Iran. The protolith of the eclogites was an oceanic tholeiitic basalt with MORB composition. Eclogite occurs within a serpentinite matrix, accompanied by mafic rocks resembling a dismembered ophiolite. The eclogitic mafic rocks record different stages of metamorphism during subduction and exhumation. Minerals formed during the prograde stages are preserved as inclusions in peak metamorphic garnet and omphacite. The rocks experienced blueschist facies metamorphism on their prograde path and were metamorphosed in eclogite facies at the peak of metamorphism. The peak metamorphic mineral paragenesis of the rocks is omphacite, garnet (pyrope‐rich), glaucophane, paragonite, zoisite and rutile. Based on textural relations, post‐peak stages can be divided into amphibolite and greenschist facies. Pressure and temperature estimates for eclogite facies minerals (peak of metamorphism) indicate 15–20 kbar at ~600 °C. The pre‐peak blueschist facies assemblage yields <11 kbar and 400–460 °C. The average pressure and temperature of the post‐peak amphibolite stage was 5–6 kbar, ~470 °C. The Shanderman eclogites were formed by subduction of Palaeotethys oceanic crust to a depth of no more than 75 km. Subduction was followed by collision between the Central Iran and Turan blocks, and then exhumation of the high pressure rocks in northern Iran.  相似文献   
22.
23.
Paragonite- and garnet-bearing high-grade epidote-amphibolite (PGEA) in the Ise area of the Hida Mountains, Japan is characterized by the high-pressure (HP) epidote-amphibolite facies parageneses (M1), garnet + hornblende + clinozoisite + paragonite + quartz + rutile. Paragonite and garnet of the peak M1 stage are locally replaced by retrograde albite (+ oligoclase) and chlorite (M2), respectively. Phase equilibria constrain peak metamorphic conditions of P = 1.1–1.4 GPa and T = 530–570 °C, and a decompressional PT path for this rock. Mineral parageneses of prograde epidote-amphibolite facies are comparable to some HP rocks from the Hongan region of western Dabie, but differ from other HP mafic schists with cooling ages of c. 330 Ma in the Hida Mountains. New paragonite K–Ar dating for the PGEA yields a Triassic cooling event at 210 Ma that is coeval with regional cooling and exhumation of the Sulu–Dabie–Qinling (SDQ) belt. Both petrological and geochronological data of the Triassic HP epidote-amphibolite in Hida Mountains support our earlier hypothesis that the SDQ belt extends across the Korean Peninsula to SW Japan.  相似文献   
24.
Summary High-grade blocks in the Franciscan complex at Tiburon, California, record relatively low temperature eclogite-facies metamorphism and blueschist-facies overprinting. The eclogite-facies mineral assemblage contains prograde-zoned garnet + omphacite + epidote ± hornblende (katophoritic and barroisitic Ca–Na amphibole) ± glaucophane + phengite (∼3.5 Si p.f.u.) ± paragonite + rutile + quartz. The blueschist-facies mineral assemblage contains chlorite + titanite + glaucophane + epidote ± albite ± phengite (∼3.3 Si p.f.u.). Albite is not stable in the eclogite stage. New calculations based on garnet-omphacite-phengite thermobarometry and THERMOCALC average-PT calculations yield peak eclogite-facies PT conditions of P = 2.2–2.5 GPa and T = 550–620 °C; porphyroclastic omphacite with inclusions of garnet and paragonite yields an average-PT of 1.8 ± 0.2 GPa at 490 ± 70 °C for the pre-peak stage. The inferred counterclockwise hairpin PT trajectory suggests prograde eclogitization of a relatively “cold” subducting slab, and subsequent exhumation and blueschist-facies recrystallization by a decreasing geotherm. Although an epidote-garnet amphibolitic assemblage is ubiquitous in some blocks, PT pseudosection analyses imply that the epidote-garnet amphibolitic assemblage is stable during prograde eclogite-facies metamorphism. Available geochronologic data combined with our new insight for the maximum pressure suggest an average exhumation rate of ∼5 km/Ma, as rapid as those of some ultrahigh pressure metamorphic terranes.  相似文献   
25.
Tetsumaru  Itaya  Hironobu  Hyodo  Tatsuki  Tsujimori  Simon  Wallis  Mutsuki  Aoya  Tetsuo  Kawakami  Chitaro  Gouzu 《Island Arc》2009,18(2):293-305
Laser step heating 40Ar/39Ar analysis of biotite and muscovite single crystals from a Barrovian type metamorphic belt in the eastern Tibetan plateau yielded consistent cooling ages of ca. 40 Ma in the sillimanite zone with peak metamorphic temperatures higher than 600°C and discordant ages from 46 to 197 Ma in the zones with lower peak temperatures. Chemical Th‐U‐Total Pb Isochron Method (CHIME) monazite (65 Ma) and sensitive high mass‐resolution ion microprobe (SHRIMP) apatite (67 Ma) dating give the age of peak metamorphism in the sillimanite zone. Moderate amounts of excess Ar shown by biotite grains with ages of 46 to 94 Ma at metamorphic grades up to the high‐grade part of the kyanite zone probably represent incomplete degassing during metamorphism. In contrast, the high‐grade part of the kyanite zone yields biotite ages of 130 to 197 Ma. The spatial distribution of these older ages in the kyanite zone along the sillimanite zone boundary suggests they reflect trapped excess argon that migrated from higher‐grade regions. The most likely source is muscovite that decomposed to form sillimanite. The zone with extreme amounts of excess argon preserves trapped remnants of an ‘excess argon wave’. We suggest this corresponds to the area where biotite cooled below its closure temperature in the presence of an elevated Ar wave. Extreme excess Ar is not recognized in muscovite suggesting that the entrapment of the argon wave by biotite took place when the rocks had cooled down to temperatures lower than the closure temperature of muscovite. The breakdown of phengite during ultrahigh‐pressure (UHP) metamorphism may be a key factor in accounting for the very old apparent ages seen in many UHP metamorphic regions. This is the first documentation of a regional Ar‐wave spatially associated with regional metamorphism. This study also implies that resetting of the Ar isotopic systems in micas can require temperatures up to 600°C; much higher than generally thought.  相似文献   
26.
Blueschist-bearing Osayama serpentinite melange develops beneath a peridotite body of the Oeyama ophiolite which occupies the highest position structurally in the central Chugoku Mountains. The blueschist-facies tectonic blocks within the serpentinite melange are divided into the lawsonite–pumpellyite grade, lower epidote grade and higher epidote grade by the mineral assemblages of basic schists. The higher epidote-grade block is a garnet–glaucophane schist including eclogite-facies relic minerals and retrogressive lawsonite–pumpellyite-grade minerals. Gabbroic blocks derived from the Oeyama ophiolite are also enclosed as tectonic blocks in the serpentinite matrix and have experienced a blueschist metamorphism together with the other blueschist blocks. The mineralogic and paragenetic features of the Osayama blueschists are compatible with a hypothesis that they were derived from a coherent blueschist-facies metamorphic sequence, formed in a subduction zone with a low geothermal gradient (~ 10°C/km). Phengite K–Ar ages of 16 pelitic and one basic schists yield 289–327 Ma and concentrate around 320 Ma regardless of protolith and metamorphic grade, suggesting quick exhumation of the schists at ca 320 Ma. These petrologic and geochronologic features suggest that the Osayama blueschists comprise a low-grade portion of the Carboniferous Renge metamorphic belt. The Osayama blueschists indicate that the 'cold' subduction type (Franciscan type) metamorphism to reach eclogite-facies and subsequent quick exhumation took place in the northwestern Pacific margin in Carboniferous time, like some other circum-Pacific orogenic belts (western USA and eastern Australia), where such subduction metamorphism already started as early as the Ordovician.  相似文献   
27.
UVR and PAR wavelengths are attenuated to different extents within the water column, causing variations in spectral composition with depth. The present investigation (a) describes the variability of UVR and PAR penetration at a station in the temperate coastal waters of Sagami Bay and determines (b) the characteristics of relative UVR penetration to the euphotic zone. Examination of the seasonal irradiance profile measurements indicated eight measurements displaying two distinct attenuation coefficients (K d) for specific UVR wavelengths and PAR. The two attenuation coefficients observed from specific wavelengths in the water column may be caused not only by chlorophyll pigments, but also by dissolved organic material in the upper layer. The 1% depth of surface UVR at 305, 320, 340, and 380 nm averaged 10.8 ± 5.7, 14.9 ± 9.5, 19.8 ± 12.1, and 30.4 ± 17.6 m, respectively. The depth of euphotic layer displayed less variability averaging 62 ± 15 m throughout the entire study. Relative UVR penetration within the euphotic zone averaged 17.8 ± 8.1, 22.9 ± 10, 30.5 ± 13.8, and 46 ± 46.9% for 305, 320, 340, and 380 nm, respectively. A large variation of the relative transmission of UVR within the euphotic zone was found although the spectral composition was relatively stable in the air throughout the study.  相似文献   
28.
29.
Early Palaeozoic kyanite–staurolite‐bearing epidote–amphibolites including foliated epidote–amphibolite (FEA), and nonfoliated leucocratic or melanocratic metagabbros (LMG, MMG), occur in the Fuko Pass metacumulate unit (FPM) of the Oeyama belt, SW Japan. Microtextural relationships and mineral chemistry define three metamorphic stages: relict granulite facies metamorphism (M1), high‐P (HP) epidote–amphibolite facies metamorphism (M2), and retrogression (M3). M1 is preserved as relict Al‐rich diopside (up to 8.5 wt.% Al2O3) and pseudomorphs after spinel and plagioclase in the MMG, suggesting a medium‐P granulite facies condition (0.8–1.3 GPa at > 850 °C). An unusually low‐variance M2 assemblage, Hbl + Czo + Ky ± St + Pg + Rt ± Ab ± Crn, occurs in the matrix of all rock types. The presence of relict plagioclase inclusions in M2 kyanite associated with clinozoisite indicates a hydration reaction to form the kyanite‐bearing M2 assemblage during cooling. The corundum‐bearing phase equilibria constrain a qualitative metamorphic P–T condition of 1.1–1.9 GPa at 550–800 °C for M2. The M2 minerals were locally replaced by M3 margarite, paragonite, plagioclase and/or chlorite. The breakdown of M2 kyanite to produce the M3 assemblage at < 0.5 GPa and 450–500 °C suggests a greenschist facies overprint during decompression. The P–T evolution of the FPM may represent subduction of an oceanic plateau with a granulite facies lower crust and subsequent exhumation in a Pacific‐type orogen.  相似文献   
30.
This study aimed to clarify the vertical differences in bacterial growth and grazing pressure on bacteria by heterotrophic nanoflagellates (HNF) and to identify the controlling factors of bacterial growth in temperate coastal waters of Sagami Bay, Japan. In addition to environmental factors, the annual monthly variations in bacterial growth rate (BGR) and the relative abundance of bacteria to HNF (BA/HNFA) were investigated in the euphotic and disphotic layers between May 2012 and May 2013. Significant vertical differences in BGR and BA/HNFA were evident between the two layers during the thermal stratification times of May to October 2012 and April to May 2013. BGR indicated significantly stronger limitation of bacterial growth in the euphotic layer compared to the disphotic layer. In contrast, significantly lower BA/HNFA was observed in the euphotic layer, suggesting significantly higher grazing pressure on bacteria by HNF. However, significant differences in BGR and BA/HNFA were not observed between the two layers from November 2012 to Match 2013, when the water column was well-mixed vertically due to the cooling and wind-induced mixing of surface water. This study indicates that bacteria in the euphotic layer grow less actively and are more vulnerable to predatory grazing by HNF relative to the disphotic layer during the stratification period. Further, multiple regression analyses indicate that bacterial growth was most controlled by the concentrations of chlorophyll a and dissolved organic carbon in the euphotic and disphotic layers, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号