首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
  国内免费   2篇
测绘学   2篇
大气科学   5篇
地球物理   21篇
地质学   27篇
海洋学   15篇
天文学   6篇
综合类   1篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   1篇
  2014年   7篇
  2013年   2篇
  2012年   2篇
  2011年   9篇
  2010年   4篇
  2009年   5篇
  2008年   3篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1984年   2篇
  1983年   1篇
  1970年   2篇
排序方式: 共有79条查询结果,搜索用时 31 毫秒
21.
Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base‐plate‐yielding rocking systems with columns allowed to uplift with that of fixed‐base systems. The study is performed using half‐scale three‐storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/√2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed‐base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self‐limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
22.
Coastal erosion is becoming an increasingly serious consequence of climate change. This study demonstrates the effects of coastal erosion on landslide activity while considering the amount of erosion and changes in pore water pressure. To determine the factors related to landslide slip generation, we specifically measured the displacement, deformation, pore water pressure, and amount of erosion with high temporal resolution (1 s–1 h) for a coastal landslide in Hokkaido, north-eastern Japan, for 7 months. It has been determined that landslides occur simultaneously with high pore water pressure. Toe erosion events also occurred several times, while the landslide exhibited major displacement. Because toe erosion and the increase in pore water pressure occurred simultaneously, we tried to determine which of the two contributed majorly to the landslide displacement by conducting a stability analysis that incorporates the effects of the two factors. From the actual observed data, toe erosion and the increase in pore water pressure had comparable effects on the destabilization of the studied landslide. Specifically, the time series for the safety factor shows that the landslide in the case with toe erosion was destabilized more than that in the case with no erosion, with a difference of more than 5% in the safety factor. The model with toe erosion provided a better explanation for the landslide displacement. Furthermore, the inclination data suggested that erosion took place at least 1 month before the landslide displacement. This implied that coastal erosion played a role in the preparation and ongoing displacement of the coastal landslide. Inland landslides with toes that are subject to undercutting due to river incision or artificial construction have geomorphological settings that are similar to those of the studied landslide. The knowledge obtained here can contribute to the understanding of destabilization mechanisms and terrain changes related to such landslides. © 2020 John Wiley & Sons, Ltd.  相似文献   
23.
Physics and Chemistry of Minerals - A black tourmaline sample from Seagull batholith (Yukon Territory, Canada) was established to be a schorl with concentrations of Fe2+ among the highest currently...  相似文献   
24.
25.
We have carried out in situ X-ray diffraction experiments on the FeS–H system up to 16.5 GPa and 1723 K using a Kawai-type multianvil high-pressure apparatus employing synchrotron X-ray radiation. Hydrogen was supplied to FeS from the thermal decomposition of LiAlH4, and FeSHx was formed at high pressures and temperatures. The melting temperature and phase relationships of FeSHx were determined based on in situ powder X-ray diffraction data. The melting temperature of FeSHx was reduced by 150–250 K comparing with that of pure FeS. The hydrogen concentration in FeSHx was determined to be x = 0.2–0.4 just before melting occurred between 3.0 and 16.5 GPa. It is considered that sulfur is the major light element in the core of Ganymede, one of the Galilean satellites of Jupiter. Although the interior of Ganymede is differentiated today, the silicate rock and the iron alloy mixed with H2O, and the iron alloy could react with H2O (as ice or water) or the hydrous silicate before the differentiation occurred in an early period, resulting in a formation of iron hydride. Therefore, Ganymede's core may be composed of an Fe–S–H system. According to our results, hydrogen dissolved in Ganymede's core lowers the melting temperature of the core composition, and so today, the core could have solid FeSHx inner core and liquid FeHx–FeSHx outer core and the present core temperature is considered to be relatively low.  相似文献   
26.
We have studied cation ordering in dolomite in situ as a function of pressure, temperature, and experimental time using the multi-anvil apparatus and synchrotron radiation. Starting with ordered dolomite, we observe the onset of disordering taking place at 950°C, while complete disordering is achieved at 1,070 (±20)°C, for pressures ranging between 3.37 and 4.05 GPa. Pressure does not appear to have significant effect on the order/disorder transition over the investigated range. We find that dolomite can reach its equilibrium ordering state above 900°C within duration of laboratory experiment (few hours), both from disordered state and from ordered state. In addition, we have reversed the dolomite breakdown reaction [magnesite + aragonite = dolomite] between 4.5 and 5.5 GPa, by monitoring diffraction peak intensity. We also have determined that dolomite is stable up to 7.4 GPa at 1,100°C. We confirm some earlier studies where a change in slope (dP/dT) has been observed, but we find a non-zero slope in the low pressure range. Combining the values of entropy obtained from dolomite degree of ordering with enthalpy values deduced from our bracketing of [magnesite + aragonite = dolomite] equilibrium, we model the location of dolomite breakdown in the P–T space as a function of cation ordering. By comparing previous conflicting studies, we show that, although kinetics of order/disorder is fast, disequilibrium dolomite breakdown is possible. Our modeling shows that subducted disordered dolomite present in carbonated sediments could be decomposed to [magnesite + aragonite] at lower pressure (3.5 GPa) than usually considered (>5 GPa). This 2-GPa (60 km) difference is valid on a fast subduction path and is possible if disorder inherited from sedimentation is preserved. On a slow subduction path, however, dolomite breakdown is encountered at about 250 km depth, which is 100 km deeper than currently considered.  相似文献   
27.
Extreme heavy rainfall due to Typhoon Talas on September 2–4, 2011 in the Kii Peninsula, Japan, triggered numerous floods and landslides. This study investigates the mechanism and the entire process of rainfall-induced deep-seated landslides forming two massive dams in the Kuridaira and Akatani valleys, respectively. The mechanism of the rapid deep-seated landslides is examined through a series of laboratory experiments on samples from sliding surfaces by using undrained high-stress dynamic-loading ring-shear apparatus. The test results indicate that the failure of samples is triggered by excess pore water pressure generation under a shear displacement from 2 to 7 mm with a pore pressure ratio ranging from 0.33 to 0.37. The rapid movement of landslides is mainly attributed to high mobility due to the liquefaction behavior of both sandstone-rich and shale samples. Geomorphic settings and landslide mobility are major contributing factors to the dam formation. Additionally, shear displacement control tests show that a certain amount of shear displacement between 2 and 7 mm along the sliding surfaces of the gravitationally deformed slopes might have led to the failures. Importantly, computer simulation with LS-RAPID software using input parameters obtained from physical experiments is employed to interpret the entire formation process of the abovementioned two landslide dams. The simulation results are examined in accordance with the observed on-site geomorphic features and recorded data to explain the possibility of sliding processes. The results further point out that local failures are initiated from the lower middle part of the landslide bodies where the geological boundary exists. This condition most probably influences the landslide initiation in the two case studies. This research is therefore helpful for hazard assessment of slopes that are susceptible to deep-seated landslides and other sequential processes in areas with geology and geomorphology similar to that of the Kii Peninsula.  相似文献   
28.
In integrated systems for accurate positioning, which consist of GNSS, INS, and other sensors, the GNSS positioning accuracy has a decisive influence on the performance of the entire system and thus is very important. However, GNSS usually exhibits poor positioning results in urban canyon environments due to pseudorange measurement errors caused by multipath creation, which leads to performance degradation of the entire positioning system. For this reason, in order to maintain the accuracy of an integrated positioning system, it is necessary to determine when the GNSS positioning is accurate and which satellites can have their pseudorange measured accurately without multipath errors. Thus, the objective of our work is to detect the multipath errors in the satellite signals and exclude these signals to improve the positioning accuracy of GNSS, especially in an urban canyon environment. One of the previous technologies for tackling this problem is RAIM, which checks the residual of the least square and identifies the suspicious satellites. However, it presumes a Gaussian measurement error that is more common in an open-sky environment than in the urban canyon environment. On the other hand, our proposed method can estimate the size of the pseudorange error directly from the information of altitude positioning error, which is available with an altitude map. This method can estimate even the size of non-Gaussian error due to multipath in the urban canyon environment. Then, the estimated pseudorange error is utilized to weight satellite signals and improve the positioning accuracy. The proposed method was tested with a low-cost GNSS receiver mounted on a test vehicle in a test drive in Nagoya, Japan, which is a typical urban canyon environment. The experimental result shows that the estimated pseudorange error is accurate enough to exclude erroneous satellites and improve the GNSS positioning accuracy.  相似文献   
29.
A dropstone‐bearing, Middle Permian to Early Triassic peri‐glacial sedimentary unit was first discovered from the Khangai–Khentei Belt in Mongolia, Central Asian Orogenic Belt. The unit, Urmegtei Formation, is assumed to cover the early Carboniferous Khangai–Khentei accretionary complex, and is an upward‐fining sequence, consisting of conglomerates, sandstones, and varved sandstone and mudstone beds with granite dropstones in ascending order. The formation was cut by a felsic dike, and was deformed and metamorphosed together with the felsic dike. An undeformed porphyritic granite batholith finally cut all the deformed and metamorphosed rocks. LA‐ICP‐MS, U–Pb zircon dating has revealed the following 206Pb/238U weighted mean igneous ages: (i) a granite dropstone in the Urmegtei Formation is 273 ± 5 Ma (Kungurian of Early Permian); (ii) the deformed felsic dike is 247 ± 4 Ma (Olenekian of Early Triassic); and (iii) the undeformed granite batholith is 218 ± 9 Ma (Carnian of Late Triassic). From these data, the age of sedimentation of the Urmegtei Formation is constrained between the Kungurian and the Olenekian (273–247 Ma), and the age of deformation and metamorphism is constrained between the Olenekian and the Carnian (247–218 Ma). In Permian and Triassic times, the global climate was in a warming trend from the Serpukhovian (early Late Carboniferous) to the Kungurian long and severe cool mode (328–271 Ma) to the Roadian to Bajocian (Middle Jurassic) warm mode (271–168 Ma), with an interruption with the Capitanian Kamura cooling event (266–260 Ma). The dropstone‐bearing strata of the Urmegtei Formation, together with the glacier‐related deposits in the Verkhoyansk, Kolyma, and Omolon areas of northeastern Siberia (said to be of Middle to Late Permian age), must be products of the Capitanian cooling event. Although further study is needed, the dropstone‐bearing strata we found can be explained in two ways: (i) the Urmegtei Formation is an autochthonous formation indicating a short‐term expansion of land glacier to the central part of Siberia in Capitanian age; or (ii) the Urmegtei Formation was deposited in or around a limited ice‐covered continent in northeast Siberia in the Capitanian and was displaced to the present position by the Carnian.  相似文献   
30.
We experimentally determined F and Cl partition coefficients together with that of 19 trace elements (including REE, U-Th, HFSE and LILE) between basaltic melt and lherzolite minerals: olivine, orthopyroxene, clinopyroxene, plagioclase and garnet. Under conditions from 8 to 25 kbars and from 1,265 to 1,430°C, compatibilities of F and Cl are globally ordered as D Cpx/melt > D Opx/melt > D Grt/melt > D Ol/melt > D Plag/melt, and D F mineral/melt is larger than D Clmineral/melt. Four other major results were brought to light. (1) Chlorine partition coefficients positively correlate with the jadeite component in orthopyroxene, and increase of the CaTs component promotes Cl incorporation in clinopyroxene. (2) Variations of fluorine partition coefficients correlate strongly with melt viscosity. (3) F and Cl partition coefficients correlate with the Young’s modulus (E 0) of pyroxene octahedral sites (M sites) and with Raman vibrational modes of pyroxenes. This demonstrates a fundamental interaction between the M site of pyroxenes and the incorporation of F and Cl. (4) We also determined the parameters of the lattice-strain model applied to 3+ cation trace elements for the two M sites in orthopyroxene and clinopyroxene: D 0M1, D 0M2, r 0M1r 0M2E 0M1 and E 0M2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号