首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1898篇
  免费   110篇
  国内免费   7篇
测绘学   77篇
大气科学   151篇
地球物理   414篇
地质学   760篇
海洋学   140篇
天文学   307篇
综合类   8篇
自然地理   158篇
  2024年   5篇
  2023年   12篇
  2022年   10篇
  2021年   30篇
  2020年   47篇
  2019年   46篇
  2018年   57篇
  2017年   83篇
  2016年   96篇
  2015年   63篇
  2014年   62篇
  2013年   125篇
  2012年   85篇
  2011年   106篇
  2010年   113篇
  2009年   116篇
  2008年   112篇
  2007年   104篇
  2006年   101篇
  2005年   93篇
  2004年   88篇
  2003年   59篇
  2002年   65篇
  2001年   38篇
  2000年   23篇
  1999年   38篇
  1998年   21篇
  1997年   15篇
  1996年   17篇
  1995年   6篇
  1994年   21篇
  1993年   14篇
  1992年   7篇
  1991年   7篇
  1990年   8篇
  1989年   7篇
  1988年   5篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   15篇
  1979年   7篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1974年   4篇
排序方式: 共有2015条查询结果,搜索用时 781 毫秒
991.
The Helmstedt‐Staßfurt salt wall is 70 km long, 6–8 km wide and one of the most important diapiric structures in northern Germany, based on the economically significant lignite‐bearing rim synclines. The analysed Schöningen rim syncline, located on the southwestern side of the Helmstedt‐Staßfurt structure, is 8 km long and 3 km wide. The basin‐fill is up to 366 m thick and characterized by 13 major lignite seams with thicknesses between 0.1 and 30 m. The key objectives of this article were to expand on the classical cross‐section based rim syncline analysis by the use of 3D models and basin simulations. Cross‐sections perpendicular to the basin axis indicate that the basin‐fill has a pronounced lenticular shape. This shape varies from more symmetric in the NW to clearly asymmetric in the SE. Isopach maps imply a two‐fold depocentre evolution. The depocentre migrated over time towards the salt wall and also showed some distinct shifts parallel to the salt wall. The basin modelling part of the study was carried out with the software PetroMod®, which focused on the burial history of the rim syncline. Modelling results also show the progressive migration of the rim syncline depocentre towards the salt wall. The present‐day asymmetry of the basin‐fill was already developed in the early phases of rim syncline evolution. The extracted geohistory curve shows initial rapid subsidence between 57 and 50 Ma and more moderate subsidence from 50 to 34 Ma. This pattern is interpreted to reflect salt evacuation from the source layer into the salt wall. The initial salt‐withdrawal rate was rapid, but later decreased probably due to depletion of the source layer.  相似文献   
992.
A three-year field study was conducted in Lake Suminko, Poland, to gain an understanding of the limnological variables that influence the formation and spatial extent of annually laminated sediments in the lake. The water body is divided into three depth strata, the mixolimnion, chemocline and monimolimnion, each defined by distinct values of temperature, electrical conductivity and oxygen concentration. Typical for meromictic lakes, the monimolimnion remains perennially anoxic and is rich in dissolved solids and nutrients. The annual pattern of particle flux in Lake Suminko is closely related to biochemical processes in the euphotic zone. During winter months we observed very low accumulation rates of non-carbonaceous matter, while during the rest of the year, three periods of calcite deposition were recorded (April, July–August, and October–November). The periods of high calcite deposition corresponded with algal blooms and oxygen concentration maxima. Two principal factors contribute to meromixis in Lake Suminko: (1) the basin is sheltered, preventing wind mixing, and (2) biochemical processes in the lake associated with high lacustrine productivity. Meromictic conditions must control the formation and preservation of laminated sediments in the lake because preserved laminations occur only in areas where the lake floor lies below monimolimnetic waters.  相似文献   
993.
Glacier hazards threaten societies in mountain regions worldwide. Glacial lake outburst floods (GLOFs) pose risks to exposed and vulnerable populations and can be linked in part to long-term post-Little Ice Age climate change because precariously dammed glacial lakes sometimes formed as glaciers generally retreated after the mid-1800s. This paper provides an interdisciplinary and historical analysis of 40?years of glacier hazard management on Mount Hualcán, at glacial Lake 513, and in the city of Carhuaz in Peru’s Cordillera Blanca mountain range. The case study examines attempted hazard zoning, glacial lake evolution and monitoring, and emergency engineering projects to drain Lake 513. It also analyzes the 11 April 2010 Hualcán rock-ice avalanche that triggered a Lake 513 GLOF; we offer both a scientific assessment of the possible role of temperature on slope stability and a GIS spatial analysis of human impacts. Qualitative historical analysis of glacier hazard management since 1970 allows us to identify and explain why certain actions and policies to reduce risk were implemented or omitted. We extrapolate these case-specific variables to generate a broader socio-environmental framework identifying factors that can facilitate or impede disaster risk reduction and climate change adaptation. Facilitating factors are technical capacity, disaster events with visible hazards, institutional support, committed individuals, and international involvement. Impediments include divergent risk perceptions, imposed government policies, institutional instability, knowledge disparities, and invisible hazards. This framework emerges from an empirical analysis of a coupled social-ecological system and offers a holistic approach for integrating disaster risk reduction and climate change adaptation.  相似文献   
994.
Widespread mud volcanism across the thick (≤ 14 km) seismically active sedimentary prism of the Gulf of Cadiz is driven by tectonic activity along extensive strike–slip faults and thrusts associated with the accommodation of the Africa–Eurasia convergence and building of the Arc of Gibraltar, respectively. An investigation of eleven active sites located on the Moroccan Margin and in deeper waters across the wedge showed that light volatile hydrocarbon gases vented at the mud volcanoes (MVs) have distinct, mainly thermogenic, origins. Gases of higher and lower thermal maturities are mixed at Ginsburg and Mercator MVs on the Moroccan Margin, probably because high maturity gases that are trapped beneath evaporite deposits are transported upwards at the MVs and mixed with shallower, less mature, thermogenic gases during migration. At all other sites except for the westernmost Porto MV, δ13C–CH4 and δ2H–CH4 values of ~ − 50‰ and − 200‰, respectively, suggest a common origin for methane; however, the ratio of CH4/(C2H6 + C3H8) varies from ~ 10 to > 7000 between sites. Mixing of shallow biogenic and deep thermogenic gases cannot account for the observed compositions which instead result mainly from extensive migration of thermogenic gases in the deeply-buried sediments, possibly associated with biodegradation of C2+ homologues and secondary methane production at Captain Arutyunov and Carlos Ribeiro MVs. At the deep-water Bonjardim, Olenin and Carlos Ribeiro MVs, generation of C2+-enriched gases is probably promoted by high heat flux anomalies which have been measured in the western area of the wedge. At Porto MV, gases are highly enriched in CH4 having δ13C–CH4 ~ − 50‰, as at most sites, but markedly lower δ2H–CH4 values < − 250‰, suggesting that it is not generated by thermal cracking of n-alkanes but rather that it has a deep Archaeal origin. The presence of petroleum-type hydrocarbons is consistent with a thermogenic origin, and at sites where CH4 is predominant support the suggestion that gases have experienced extensive transport during which they mobilized oil from sediments ~ 2–4 km deep. These fluids then migrate into shallower, thermally immature muds, driving their mobilization and extrusion at the seafloor. At Porto MV, the limited presence of petroleum in mud breccia sediments further supports the hypothesis of a predominantly deep microbial origin of CH4.  相似文献   
995.
Information about the chemical electron accepting capacity (EAC) of dissolved organic matter (DOM) is scarce owing to a lack of applicable methods. We quantified the electron transfer from metallic Zn to natural DOM in batch experiments at DOC concentrations of 10–100 mg-C L− 1 and related it to spectroscopic information obtained from UV-, synchronous fluorescence, and FTIR- spectroscopy. The electron donating capacity of DOM and pre-reduced DOM was investigated using Fe(CN)63 as electron acceptor. Presence of DOM resulted in release of dissolved Zn, consumption of protons, and slower release of hydrogen compared to reaction of metallic Zn with water at pH 6.5. Comparison with reaction stoichiometry confirmed that DOM accepted electrons from metallic Zn. The release of dissolved Zn was dependent on pH, DOC concentration, ionic strength, and organic matter properties. The reaction appeared to be completed within about 24 h and was characterized by pseudo first order kinetics with rate constants of 0.5 to 0.8 h− 1. EAC per mass unit of carbon ranged from 0.22 mmol g− 1 C to 12.6 mmol g− 1 C. Depending on the DOM, a calculated 28–127% of the electrons transferred from metallic Zn to DOM could be subsequently donated to Fe(CN)63. EAC decreased with DOC concentration, and increased with aromaticity, carboxyl, and phenolic content of the DOM. The results indicate that an operationally defined EAC of natural DOM can be quantified by reaction with metallic Zn and that DOM properties control the electron transfer. Shortcomings of the method are the coagulation and precipitation of DOM during the experiment and the production of hydrogen and dissolved Zn by reaction of metallic Zn with water, which may influence the determined EAC.  相似文献   
996.
The Skaergaard liquid line of descent revisited   总被引:1,自引:0,他引:1  
There is a fundamental conflict between the suggestion that the iron content of Skaergaard liquids increases during Fe–Ti oxide fractionation and the observation that at the same time oxygen fugacity () drops by two log-units below the fayalite-magnetite-quartz oxygen buffer (FMQ). A new petrographic study of average Skaergaard gabbros shows that the total modal content of Fe–Ti oxides is about 22% in the early LZc and markedly decreases to below 5% in the UZc. Forward modeling based on these modal constraints, as well as experimental results on Skaergaard-related dikes, predicts that fractionation of troctolitic LZa gabbros drives the derivative liquid towards a high-iron content. Strong iron enrichment continues, together with a small decline in silica, during LZb crystallization due to the appearance of augite as a fractionating phase. The fractionation of Fe–Ti oxides in the LZc initially suppresses iron enrichment and reverses the silica trend to one of slight enrichment. However, continued evolution into the UZ produces liquids with maximum UZc FeO* content of 23–25 wt.% and SiO2 content of 53 wt.% (FeO* is total iron as FeO). The maximum in FeO* is dependent on several factors of which the Fe–Ti oxide mode has the strongest effect. The during crystallization of the LZc is widely thought to have been at, or slightly below, the fayalite-magnetite-quartz oxygen buffer (FMQ). Under closed system evolution, incorporation of ferric iron into augite during formation of the LZb restricts the increase in to about 0.1 log-units above FMQ (=0.1 ΔFMQ). Likewise, crystallization of the LZc through the UZa, involving Fe–Ti oxide minerals, leads to a decline in of less than 0.1 ΔFMQ. Crystallization of the UZb-c gabbros results in oxidation to a maximum of 0.5 ΔFMQ. This behavior can account for the iron-rich character of the UZ gabbros, as well as, the low modal content of Fe–Ti oxides. Thus, evolved Skaergaard liquids are high in iron and contain a modest amount of SiO2. Our modeling result do not account for a strong drop in through the layered series. Such a drop would require an unacceptably high proportion of Fe–Ti oxides and high-magnetite content in the fractionating assemblage. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
997.
Spherulites are spherical clusters of radiating crystals that occur naturally in rhyolitic obsidian. The growth of spherulites requires diffusion and uptake of crystal forming components from the host rhyolite melt or glass, and rejection of non-crystal forming components from the crystallizing region. Water concentration profiles measured by synchrotron-source Fourier transform spectroscopy reveal that water is expelled into the surrounding matrix during spherulite growth, and that it diffuses outward ahead of the advancing crystalline front. We compare these profiles to models of water diffusion in rhyolite to estimate timescales for spherulite growth. Using a diffusion-controlled growth law, we find that spherulites can grow on the order of days to months at temperatures above the glass transition. The diffusion-controlled growth law also accounts for spherulite size distribution, spherulite growth below the glass transition, and why spherulitic glasses are not completely devitrified. An erratum to this article can be found at  相似文献   
998.
We have carried out a comparative Rb-Sr, Sm-Nd and Lu-Hf isotopic study of a progressively deformed hercynian leucogranite from the French Massif Central, belonging to the La Marche ductile shear zone, in order to investigate the respective perturbation of these geochronometers with fluid induced deformation. The one-meter wide outcrop presents a strongly deformed and mylonitized zone at the center, and an asymmetric deformation pattern with a higher deformation gradient on the northern side of the zone. Ten samples have been carefully collected every 10 cm North and South away from the strongest deformed mylonitic zone. They have been analyzed for a complete major, trace element data set, oxygen isotopes, Rb-Sr, Sm-Nd and Lu-Hf isotopic systematics.We show that most of major and trace elements except SiO2, alkaline elements (K2O, Rb), and some metal transition elements (Cu), are progressively depleted with increasing deformation. This depletion includes REE + Y, but also HFS elements (Ti, Hf, Zr, Nb) which are commonly considered as immobile elements during upper level processes. Variations in elemental ratios with deformation, e.g. decrease in LREE/MREE- HREE, Nd/Hf, Th/Sr, increase in Rb/Sr, U/Th and constant Sr/Nd, lead to propose the following order of element mobility: U ? Th > Sr = Nd ? Hf + HREE. We conclude in agreement with previous tectonic and metallogenic studies that trace element patterns across the shear zone result from circulation of oxidizing F-rich hydrothermal fluids associated with deformation. A temperature of the fluid of 470-480 °C can be deduced from the δ18O equilibrium between quartz-muscovite pairs.Elemental fractionation induces perturbation of the Rb-Sr geochronometer. The well-defined 87Rb/86Sr-87Sr/86Sr correlation gives an apparent age of 294 ± 19 Ma, slightly younger than the 323 ± 4 Ma age of leucogranites in this area. This apparent age is interpreted as dating event of intense deformation and fluid circulation associated with mass transfer, and exhumation of the ductile crust shortly after the leucogranite emplacement. Sm-Nd and Lu-Hf isochron-type diagrams do not define any correlation, because of the low fractionated Sm/Nd and Lu/Hf ratios. Isotopic data demonstrate that only the Lu-Hf geochronometer system is not affected by fluid circulation and gives reliable TDM age (1.29 ± 0.03 Ga) and εHf signatures. By contrast, the Sm-Nd geochronometer system gives erroneous old TDM ages of 2.84-4 Ga. There is no positive εNd-εHf correlation, because of decreasing εNd values with deformation at constant εHf values. However, εNd-εHf values remain in the broad εNd-εHf terrestrial array, which strongly indicates that fluid-induced fractionation can contribute to the width of the terrestrial array. The strong εHf negative values of the leucogranite are similar to metasedimentary granulitic xenoliths from the French Massif Central and confirm the generation of the leucogranite by several episodes of reworking of the lower crust.  相似文献   
999.
We hypothesize that nutrient cycling in a Gulf of Mexico subterranean estuary (STE) is fueled by oxygen and labile organic matter supplied by tidal pumping of seawater into the coastal aquifer. We estimate nutrient production rates using the standard estuarine model and a non-steady-state box model, separate nutrient fluxes associated with fresh and saline submarine groundwater discharge (SGD), and estimate offshore fluxes from radium isotope distributions. The results indicate a large variability in nutrient concentrations over tidal and seasonal time scales. At high tide, nutrient concentrations in shallow beach groundwater were low as a result of dilution caused by seawater recirculation. During ebb tide, the concentrations increased until they reached a maximum just before the next high tide. The dominant form of nitrogen was dissolved organic nitrogen (DON) in freshwater, nitrate in brackish waters, and ammonium in saline waters. Dissolved organic carbon (DOC) production was two-fold higher in the summer than in the winter, while nitrate and DON production were one order of magnitude higher. Oxic remineralization and denitrification most likely explain these patterns. Even though fresh SGD accounted for only ∼5% of total volumetric additions, it was an important pathway of nutrients as a result of biogeochemical inputs in the mixing zone. Fresh SGD transported ∼25% of DOC and ∼50% of total dissolved nitrogen inputs into the coastal ocean, with the remainder associated with a one-dimensional vertical seawater exchange process. While SGD volumetric inputs are similar seasonally, changes in the biogeochemical conditions of this coastal plain STE led to higher summertime SGD nutrient fluxes (40% higher for DOC and 60% higher for nitrogen in the summer compared to the winter). We suggest that coastal primary production and nutrient dynamics in the STE are linked.  相似文献   
1000.
The microbial recalcitrance of char accumulated after vegetation fires was studied using pyrogenic organic material (PyOM) with increasing degrees of charring, produced from rye grass (Lolium perenne) and pine wood (Pinus sylvestris) at 350 °C under oxic conditions. Solid state 13C and 15N nuclear magnetic resonance (NMR) spectroscopy confirmed increasing aromaticity and the formation of heterocyclic N with prolonged charring. After mixing with a mineral soil, the PyOM was aerobically incubated for 48 days at 30 °C. To account for the input of fresh litter after a fire event, unburnt rye grass residue was added as a co-substrate. The grass-derived PyOM showed the greatest extent of C mineralisation. After 48 days incubation, up to 3.2% of the organic C (OC) was converted to CO2. More severe thermal alteration resulted in a decrease in the total C mineralisation to 2.5% of OC. In the pine-derived PyOM, only 0.7% and 0.5% of the initial C were mineralised. The co-substrate additions did not enhance PyOM mineralisation during initial degradation. 13C NMR spectroscopic analysis indicated structural changes during microbial degradation of the PyOM. Concomitant with a decrease in O-alkyl/alkyl-C, carboxyl/carbonyl C content increased, pointing to oxidation. Only the strongly thermally altered pine PyOM showed a reduction in aromaticity. The small C losses during the experiment indicated conversion of aryl C into other C groups. As revealed by the increase in carboxyl/carbonyl C, this conversion must have included the opening and partial oxidation of aromatic ring structures. Our study demonstrates that plant PyOM can be microbially attacked and mineralised at rates comparable to those for soil organic matter (SOM), so its role as a highly refractory SOM constituent may need re-evaluation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号