首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   770篇
  免费   23篇
  国内免费   3篇
测绘学   21篇
大气科学   51篇
地球物理   210篇
地质学   266篇
海洋学   60篇
天文学   116篇
综合类   2篇
自然地理   70篇
  2022年   3篇
  2021年   11篇
  2020年   6篇
  2019年   14篇
  2018年   12篇
  2017年   18篇
  2016年   16篇
  2015年   11篇
  2014年   28篇
  2013年   42篇
  2012年   22篇
  2011年   37篇
  2010年   42篇
  2009年   51篇
  2008年   34篇
  2007年   30篇
  2006年   28篇
  2005年   39篇
  2004年   27篇
  2003年   19篇
  2002年   25篇
  2001年   12篇
  2000年   18篇
  1999年   9篇
  1998年   16篇
  1997年   10篇
  1996年   4篇
  1995年   13篇
  1994年   7篇
  1993年   13篇
  1992年   8篇
  1991年   10篇
  1990年   8篇
  1989年   10篇
  1988年   13篇
  1987年   15篇
  1986年   11篇
  1985年   9篇
  1984年   13篇
  1983年   12篇
  1982年   6篇
  1981年   5篇
  1980年   12篇
  1979年   3篇
  1978年   15篇
  1976年   3篇
  1974年   5篇
  1973年   5篇
  1970年   4篇
  1912年   2篇
排序方式: 共有796条查询结果,搜索用时 31 毫秒
121.
Sediment waves are commonly observed on the sea floor and often vary in morphology and geometry according to factors such as seabed slope, density and discharge of turbidity currents, and the presence of persistent contour currents. This paper documents the morphology, internal geometry and distribution of deep‐water (4000 to 5000 m) bedforms observed on the sea floor offshore eastern Canada using high‐resolution multibeam bathymetry data and seismic stratigraphy. The bedforms have wavelengths of >1 km but fundamentally vary in terms of morphology and internal stratigraphy, and are distinguished into three main types. The first type, characterized by their long‐wavelength crescentic shape, is interpreted as net‐erosional cyclic steps. These cyclic steps were formed by turbidity currents flowing through canyons and overtopping and breaching levées. The second type, characterized by their linear shape and presence on levées, is interpreted as net‐depositional cyclic steps. These upslope migrating bedforms are strongly aggradational, indicating high sediment deposition from turbidity currents. The third type, characterized by their obliqueness to canyons, is observed on an open slope and is interpreted as antidunes. These antidunes were formed by the deflection of the upper dilute, low‐density parts of turbidity currents by contour currents. The modelling of the behaviour of these different types of turbidity currents reveals that fast‐flowing flows form cyclic steps while their upper parts overspill and are entrained westward by contour currents. The interaction between turbidity currents and contour currents results in flow thickening and reduced sediment concentration, which leads to lower flow velocities. Lower velocities, in turn, allow the formation of antidunes instead of cyclic steps because the densiometric Froude number (Fr′) decreases. Therefore, this study shows that both net‐erosional and net‐depositional cyclic steps are distributed along channels where turbidity currents prevail whereas antidunes form on open slopes, in a mixed turbidite/contourite system. This study provides insights into the influence of turbidity currents versus contour currents on the morphology, geometry and distribution of bedforms in a mixed turbidite–contourite system.  相似文献   
122.
Subsurface tile drainage speeds water removal from agricultural fields that are historically prone to flooding. While managed drainage systems improve crop yields, they can also contribute tothe eutrophication of downstream ecosystems, as tile-drained systems are conduits for nutrients to adjacent waterways. The changing climate of the Midwestern US has already altered precipitation regimes which will likely continue into the future, with unknown effects on tile drain water and nutrient loss to waterways. Adding vegetative cover (i.e., as winter cover crops) is one approach that can retain water and nutrients on fields to minimize export via tile drains. In the current study, we evaluate the effect of cover crops on tile drain discharge and soluble reactive phosphorus (SRP) loads using bi-monthly measurements from 43 unique tile outlets draining fields with or without cover crops in two watersheds in northern Indiana. Using four water years of data (n = 844 measurements), we examined the role of short-term antecedent precipitation conditions and variation in soil biogeochemistry in mediating the effect of cover crops on tile drain flow and SRP loads. We observed significant effects of cover crops on both tile drain discharge and SRP loads, but these results were season and watershed specific. Cover crop effects were identified only in spring, where their presence reduced tile drain discharge in both watersheds and SRP loads in one watershed. Varying effects on SRP loads between watersheds were attributed to different soil biogeochemical characteristics, where soils with lower bioavailable P and higher P sorption capacity were less likely to have a cover crop effect. Antecedent precipitation was important in spring, and cover crop differences were still evident during periods of wet and dry antecedent precipitation conditions. Overall, we show that cover crops have the potential to significantly decrease spring tile drain P export, and these effects are resilient to a wide range of precipitation conditions.  相似文献   
123.
The Shenandoah Watershed Study (established in 1979) and the Virginia Trout Stream Sensitivity Study (established in 1987) serve to increase understanding of hydrological and biogeochemical changes in western Virginia mountain streams that occur in response to acidic deposition and other ecosystem stressors. The SWAS-VTSSS program has evolved over its 40+ year history to consist of a temporally robust and spatially stratified monitoring framework. Currently stream water is sampled for water quality bi-hourly during high-flow events at three sites and weekly at four sites within Shenandoah National Park (SHEN), and quarterly at 72 sites and on an approximately decadal frequency at ~450 sites within the wider western Virginia Appalachian region. Stream water is evaluated for pH, acid neutralizing capacity (ANC), base cations (calcium, magnesium, sodium and potassium ion), acid anions (sulphate, nitrate and chloride), silica, ammonium, and conductivity with a subset of samples evaluated for monomeric aluminium and dissolved organic carbon. Hourly stream discharge (four sites) and in-situ measurements of conductivity, water and air temperature (three sites) are also measured within SHEN. Here we provide an overview and timeline of the SWAS-VTSSS stream water monitoring program, summarize the field and laboratory methods, describe the water chemistry and hydrologic data sets, and document major watershed disturbances that have occurred during the program history. Website links and instructions are provided to access the stream chemistry and time-series monitoring data in open-access federal databases. The purpose of this publication is to promote awareness of these unique, long-term data sets for wider use in catchment studies. The water chemistry and hydrologic data can be used to investigate a wide range of biogeochemical research questions and provide key inputs for models of these headwater stream ecosystems. SWAS-VTSSS is an ongoing program and quality assured data sets are uploaded to the databases annually.  相似文献   
124.
Previous “fraction of young water” (Fyw) estimates based on relative annual isotopic amplitudes in precipitation (Ap) and streamflow (As) produced low Fyw values in mountain catchments, which is contrary to extensive research that reports rapid water transmission in mountains. This study investigated this discrepancy by testing the effect of snow accumulation on the model that underpins the Fyw method. A Monte-Carlo analysis of simulations for 20,000 randomly-generated catchment model configurations used 10 years of precipitation inputs for the Upper Elbow River catchment in the Rocky Mountains (Alberta, Canada) to model discharge with and without snowpack storage of winter precipitation. Neither direct nor modified precipitation input produced a 1:1 relationship between As/Ap and Fyw, undermining the applicability of the original Fyw method in mountain watersheds with large seasonal snow accumulation. With snowpack-modified input a given As/Ap ratio corresponds to a range of Fyw values, which can still provide semi-quantitative information. In the small (435 km2) Elbow River catchment a Fyw range of 7–23% supports previous findings of rapid transmission in mountain catchments. Further analysis showed that the improved discharge prediction (Nash–Sutcliffe efficiency > 0.9) correlates with higher Fyw values and demonstrated that the interannual shifts in δ18O can be used to estimate of new water (<1 year) fraction in winter streamflow, and the estimate of 20% for the Elbow River further supports rapid transmission in mountain catchments.  相似文献   
125.
126.
The problem of magnetic field generation and advection in accretion discs is considered, in the context of wind launching and angular momentum extraction. A dipole-symmetry solution of the dynamo equations is found, with force-free boundary conditions appropriate for matching to a wind solution. Consideration of the curved field geometry and diffusive nature of the disc enables the position of the sonic point to be calculated and related to the field inclination at the disc surface. A critical inclination of 20° to the horizontal results, for which the sonic point lies in the disc surface and there is no potential barrier to wind launching. Hence the wind mass-loss rate will only become excessive, leading to disc disruption, for large field bending. The compressional effect of the horizontal magnetic field enhances the wind mass flux.  相似文献   
127.
128.
Small, steep watersheds are prolific sediment sources from which sediment flux is highly sensitive to climatic changes. Storm intensity and frequency are widely expected to increase during the 21st century, and so assessing the response of small, steep watersheds to extreme rainfall is essential to understanding landscape response to climate change. During record winter rainfall in 2016–2017, the San Lorenzo River, coastal California, had nine flow peaks representing 2–10‐year flood magnitudes. By the third flood, fluvial suspended sediment showed a regime shift to greater and coarser sediment supply, coincident with numerous landslides in the watershed. Even with no singular catastrophic flood, these flows exported more than half as much sediment as had a 100‐year flood 35 years earlier, substantially enlarging the nearshore delta. Annual sediment load in 2017 was an order of magnitude greater than during an average‐rainfall year, and 500‐fold greater than in a recent drought. These anomalous sediment inputs are critical to the coastal littoral system, delivering enough sediment, sometimes over only a few days, to maintain beaches for several years. Future projections of megadroughts punctuated by major atmospheric‐river storm activity suggest that interannual sediment‐yield variations will become more extreme than today in the western USA, with potential consequences for coastal management, ecosystems, and water‐storage capacity. The occurrence of two years with major sediment export over the past 35 years that were not associated with extremes of the El Niño Southern Oscillation or Pacific Decadal Oscillation suggests caution in interpreting climatic signals from marine sedimentary deposits derived from small, steep, coastal watersheds, to avoid misinterpreting the frequencies of those cycles. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
129.
Papago Park, Arizona, is a pediment-inselberg complex that hosts a variety of well developed tafoni and alveolar weathering forms. The purpose of this paper is to analyse the nature of chemical weathering associated with the tafoni using backscatter electron microscopy (BSE) and quantitative wavelength dispersive X-ray analysis (WDS). Calcium-rich and iron-rich coatings occur on the outer shells of the tafoni. Calcium carbonate precipitation within mineral microfractures occurs on the underside of the tafoni. Chemical weathering of primary mineral grains provides a source of material found in the coatings. The WDS analyses show a near-complete lack of salt-forming elements. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
130.
Private industry, the Government of Gabon and two international NGOs collaborated to conduct marine surveys off the coast of Gabon, Central Africa. Surveys addressed multiple objectives of surveillance and monitoring, the documentation of the distribution of and threats to the marine megafauna, and capacity-building among government agents and local early-career scientists. During 22 days of survey effort over a two-year period, observers documented humpback whales Megaptera novaeangliae, bottlenose dolphins Tursiops truncatus, Atlantic humpback dolphins Sousa teuszii and common dolphins Delphinus delphis. Humpback whale presence was limited to the months of July to November. Bottlenose dolphins were present year-round and photo-identification of individuals indicated a closed, resident population, with an abundance estimate of 118 (CV = 21.6%, 95% CI 78–180). Small open-decked fishing vessels with gillnets were observed concentrated around river mouths within 2 km of shore, while commercial trawlers were at least 10 km offshore; all were confirmed to be registered and legal. Observations of marine turtles, flocks of marine birds, and floating logs and other debris were sparse. This multi-stakeholder collaboration to conduct a marine survey can serve as an effective model by which funding and logistic support from private industry paired with technical expertise from NGOs and academic institutions can benefit marine and coastal conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号