首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7704篇
  免费   204篇
  国内免费   310篇
测绘学   212篇
大气科学   604篇
地球物理   1599篇
地质学   2873篇
海洋学   636篇
天文学   1849篇
综合类   29篇
自然地理   416篇
  2023年   42篇
  2022年   52篇
  2021年   55篇
  2020年   66篇
  2019年   81篇
  2018年   233篇
  2017年   190篇
  2016年   274篇
  2015年   161篇
  2014年   258篇
  2013年   412篇
  2012年   237篇
  2011年   405篇
  2010年   286篇
  2009年   456篇
  2008年   359篇
  2007年   323篇
  2006年   335篇
  2005年   305篇
  2004年   289篇
  2003年   272篇
  2002年   250篇
  2001年   218篇
  2000年   205篇
  1999年   178篇
  1998年   168篇
  1997年   161篇
  1996年   154篇
  1995年   136篇
  1994年   114篇
  1993年   92篇
  1992年   78篇
  1991年   87篇
  1990年   77篇
  1989年   83篇
  1988年   59篇
  1987年   101篇
  1986年   64篇
  1985年   64篇
  1984年   69篇
  1983年   71篇
  1982年   72篇
  1981年   68篇
  1980年   53篇
  1979年   51篇
  1977年   48篇
  1976年   47篇
  1975年   35篇
  1974年   30篇
  1973年   41篇
排序方式: 共有8218条查询结果,搜索用时 234 毫秒
991.
The origin of CN radicals in comets is not completely understood so far. We present a study of CN and HCN production rates and CN Haser scale lengths showing that: (1) at heliocentric distances larger than 3 AU, CN radicals could be entirely produced by HCN photolysis; (2) closer to the Sun, for a fraction of comets CN production rates are higher than HCN ones whereas (3) in the others, CN distribution cannot be explained by the HCN photolysis although CN and HCN production rates seem to be similar. Thus, when the comets are closer than 3 AU to the Sun, an additional process to the HCN photolysis seems to be required to explain the CN density in some comets.The photolysis of HC3N or C2N2 could explain the CN origin. But the HC3N production rate is probably too low to reproduce CN density profile, even if uncertainties on its photolysis leave the place for all possible conclusions. The presence of C2N2 in comets is a reliable hypothesis to explain the CN origin; thus, its detection is a challenging issue. Since C2N2 is very difficult to detect from ground-based observations, only in situ measurements or space observations could determine the contribution of this compound in the CN origin.Another hypothesis is a direct production of CN radicals by the photo- or thermal degradation of complex refractory organic compounds present on cometary grains. This process could explain the spatial profile of CN inside jets and the discrepancy noted in the isotopic ratio 14N/15N between CN and HCN. Laboratory studies of the thermal and UV-induced degradation of solid nitrogenated compounds are required to model and validate this hypothesis.  相似文献   
992.
993.
We study the evolution of a rigidly rotating protoneutron star (PNS) with hyperons and nucleons or solely nucleons in its core due to the escape of trapped neutrinos. As the neutrinos escape, the core nucleonic neutron star (NS) expands and the stellar rotation slows. After the neutrinos escape, the range of the spin periods is narrower than the initial one, but the distribution is still nearly uniform. A PNS with hyperons, at the late stage of its evolution, keeps shrinking and spinning up until all the trapped neutrinos escape. Consequently, the distribution of the stellar initial spin periods is skewed towards shorter periods. If the hyperonic star is metastable, its rotational frequency accelerates distinguishedly before it collapses to a black hole.  相似文献   
994.
The South Karakorum margin, east of the Himalayan syntaxis, consist of an E–W elongated zone of young (10–3 Ma) high‐grade metamorphic rocks (M2) and related migmatitic domes. This late tectono‐metamorphic event post‐dates the Palaeogene (55–37 Ma) phase of thickening of the belt featured by NW–SE structures and associated M1 amphibolite facies metamorphism (0.7 GPa, 700 °C). This M2 metamorphism is characterised by low‐pressure, high‐temperature conditions coeval with migmatite formation in response to a thermal increase of c. 150 °C compared to M1, culminating at a temperature of c. 770 °C and a pressure of 0.5–0.6 GPa. Rapid exhumation of migmatitic domes, at a rate of 5 mm yr?1, was accommodated by vertical extrusion, in the core of E–W crustal‐scale folds. These crustal‐scale folds formed in response to N–S syn‐collisional shortening and were enhanced by thermal weakening of the migmatised continental crust. M2 metamorphism is spatially and temporarily associated with granitoids showing a mantle affinity, firmly suggesting that this could be the advective heat source for the granite and syenite generation and the subsequent migmatisation of the mid‐crustal level. Such relationships between a mantle‐related magmatism and a high‐temperature metamorphism in a convergent shortening context are suggestive of the breakoff of the subducted Indian slab since 20 Ma.  相似文献   
995.
Active faults aligning in NW–SE direction and forming flower structures of strike-slip faults were observed in shallow seismic data from the shelf offshore of Avc?lar in the northern Marmara Sea. By following the parallel drainage pattern and scarps, these faults were traced as NW–SE-directed lineaments in the morphology of the northern onshore sector of the Marmara Sea (eastern Thrace Peninsula). Right-lateral displacements in two watersheds of drainage and on the coast of the Marmara Sea and Black Sea are associated with these lineaments. This right-lateral displacement along the course of these faults suggests a new, active strike-slip fault zone located at the NW extension of the northern boundary fault of the Ç?narc?k Basin in the Marmara Sea. This new fault zone is interpreted as the NW extension of the northern branch of the North Anatolian Fault Zone (NAFZ), extending from the Ç?narc?k Basin of the Marmara Sea to the Black Sea coast of the Thrace Peninsula, and passing through B üy ük çekmece and K ü ç ük çekmece lagoons. These data suggest that the rupture of the 17 August 1999 earthquake in the NAFZ may have extended through Avc?lar. Indeed, Avc?lar and ?zmit, both located on the Marmara Sea coast along the rupture route, were strongly struck by the earthquake whereas the settlements between Avc?lar and ?zmit were much less affected. Therefore, this interpretation can explain the extraordinary damage in Avc?lar, based on the newly discovered rupture of the NAFZ in the Marmara Sea. However, this suggestion needs to be confirmed by further seismological studies.  相似文献   
996.
997.
Large-scale, decelerating, relativistic X-ray jets from microquasar XTE J1550−564 has been recently discovered with Chandra by Corbel et al. (2002). We find that the dynamical evolution of the approaching jet at the late time is consistent with the well-known Sedov evolutionary phase Rt 2/5. A trans-relativistic external shock dynamic model by analogy with the evolution of gamma-ray burst remnants, is shown to be able to fit the proper-motion data of the approaching jet reasonably well. The inferred interstellar medium density around the source is well below the canonical value n ISM∼1 cm−3. The rapidly fading X-ray emission can be interpreted as synchrotron radiation from the non-thermal electrons in the adiabatically expanding ejecta. These electrons were accelerated by the reverse shock (moving back into the ejecta) which becomes important when the inertia of the swept external matter leads to an appreciable slowing down of the original ejecta.  相似文献   
998.
999.
1000.
Raeder  J.  Wang  Y.L.  Fuller-Rowell  T.J.  Singer  H.J. 《Solar physics》2001,204(1-2):323-337
We present results from a global simulation of the interaction of the solar wind with Earth's magnetosphere, ionosphere, and thermosphere for the Bastille Day geomagnetic storm and compare the results with data. We find that during this event the magnetosphere becomes extremely compressed and eroded, causing 3 geosynchronous GOES satellites to enter the magnetosheath for an extended time period. At its extreme, the magnetopause moves at local noon as close as 4.9 R E to Earth which is interpreted as the consequence of the combined action of enhanced dynamic pressure and strong dayside reconnection due to the strong southward interplanetary magnetic field component B z, which at one time reaches a value of −60 nT. The lobes bulge sunward and shield the dayside reconnection region, thereby limiting the reconnection rate and thus the cross polar cap potential. Modeled ground magnetic perturbations are compared with data from 37 sub-auroral, auroral, and polar cap magnetometer stations. While the model can not yet predict the perturbations and fluctuations at individual ground stations, its predictions of the fluctuation spectrum in the 0–3 mHz range for the sub-auroral and high-latitude regions are remarkably good. However, at auroral latitudes (63° to 70° magnetic latitude) the predicted fluctuations are slightly too high. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1014228230714  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号