首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   2篇
  国内免费   5篇
测绘学   3篇
大气科学   1篇
地球物理   17篇
地质学   40篇
海洋学   12篇
天文学   8篇
综合类   1篇
自然地理   11篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   9篇
  2005年   4篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
91.
The Madurai Block (MB) is the largest Precambrian crustal block in the Southern Granulite Terrane (SGT) of India and hosts rare cordierite- and orthopyroxene-bearing granulites. Investigations based on field study, petrology, metamorphic PT estimation, and detrital zircon geochronology of these granulites are crucial for understanding the ultrahigh-temperature (UHT) metamorphism and crustal evolution in this block. Here we investigate the petrology and zircon U–Pb geochronology of two new localities of cordierite granulites at Kottayam (southern MB; SMB) and Munnar (central MB; CMB). Petrographic observations and phase equilibria modelling results indicate that these rocks experienced UHT metamorphism with the peak temperature exceeding 950℃ and involving clockwise P–T paths. The prograde mineral assemblages define the PT conditions of 6.8–8.7 kbar and 750–875℃. The peak conditions are estimated using pseudosection modelling and geothermometry, which yield PT estimates of 7.1–9.1 kbar and 955–985℃. The retrograde cooling and decompression are inferred at 860–790℃ and <6.5 kbar, respectively. Partial melting played an important role during metamorphism and contributed to the overgrowth around detrital zircons. The melt production process was probably related to biotite dehydration melting, and was mainly triggered by heating, with or without the effect of decompression. Detrital zircons in cordierite granulite samples from the two localities show similar age distributions and have dominantly Neoproterozoic ages (1024–760 Ma). The zircon cores show oscillatory zoning with a wide range of Th/U ratios (0.01–0.96), implying complex protoliths from multiple Neoproterozoic provenances from both southern and central domains of the MBs. Zircon rims and homogeneous bright zircons yield mean ages of 549 ± 5 Ma, 536 ± 6 Ma, and 544 ± 6 Ma, which are interpreted to represent zircon overgrowths during the post-peak cooling and decompression process. The timing of peak UHT metamorphism is constrained as 549–599 Ma, which coincides with the assembly of the Gondwana supercontinent.  相似文献   
92.
We report new petrological, phase equilibria modeling, and fluid inclusion data for pelitic and mafic granulites from Rundv?gshetta in the highest-grade region of the Neoproterozoic Lützow-Holm Complex(LHC),East Antarctica, and provide unequivocal evidence for fluid-rock interaction and high-temperature metasomatism in the presence of brine fluid. The studied locality is composed dominantly of well-foliated pelitic granulite(K-feldspar+quartz+sillimanite+garnet+ilmenite) with foliation-parallel bands and/or layers of mafic granulite(plagioclase+orthopyroxene+garnet+ilmenite+quartz+biotite). The boundary between the two lithologies is defined by thin(about 1 -20 cm in thick) garnet-rich layers with a common mineral assemblage of garnet+plagioclase+quartz+ilmenite+biotite ? orthopyroxene. Systematic increase of grossular and decrease of pyrope contents in garnet as well as decreasing Mg/(Fe+Mg) ratio of biotite from the pelitic granulite to garnet-rich rock and mafic granulite suggest that the garnet-rich layer was formed by metasomatic interaction between the two granulite lithologies. Phase equilibria modeling in the system NCKFMASHTO demonstrates that the metasomatism took place at 850 -860℃, which is slightly lower than the peak metamorphism of this region, and the modal abundance of garnet is the highest along the metapeliteemetabasite boundary(up to 40%), which is consistent with the field and thin section observations. The occurrence of brine(7.0 -10.9 wt.% Na Cleqfor ice melting or 25.1 -25.5 wt.% NaC leqfor hydrohalite melting) fluid inclusions as a primary phase trapped within plagioclase in the garnet-rich layer and the occurrence of Cl-rich biotite(Cl = 0.22 -0.60 wt.%) in the metasomatic rock compared to that in pelitic(0.15 -0.24 wt.%) and mafic(0.06-0.13 wt.%) granulites suggest infiltration of brine fluid could have given rise to the high-temperature metasomatism. The fluid might have been derived from external sources possibly related to the formation of major suture zones formed during the Gondwana amalgamation.  相似文献   
93.
Eclogite-facies rocks and high-pressure granulites provide windows to the deeper parts of subduction zones and the root of mountain chains, carrying potential records of fluids associated with subduction-accretion-collision tectonics. Here, we report petrological and fluid inclusion data on retrogressed eclogite and high-pressure granulite samples from Sittampundi, Kanji Malai and Perundarai in southern India. These rocks occur within the trace of the Cambrian collisional suture which marks the final phase of amalgamation of the Gondwana supercontinent. The garnet–clinopyroxene assemblage in the eclogites preserves relict omphacite, whereas the high-pressure granulites are characterized by an assemblage of garnet and clinopyroxene in the absence of omphacite and with minor plagioclase, orthopyroxene, and quartz. Phase relations computed for the eclogite assemblage yield peak PT conditions of 19 kbar and 1,010°C. The mafic granulites also preserve the memory of high to ultrahigh-temperature metamorphism followed by an isothermal decompression. Systematic fluid inclusion optical, microthermometric and laser Raman spectroscopic studies were conducted in garnet and plagioclase from the eclogite–high pressure granulite suite. The results suggest that the early fluids were a mixture of CO2, CH4 and N2 probably derived from decarbonation and devolatilization reactions in a subduction setting during the prograde stage. The later generation inclusions, which constitute the dominant category in all the samples studied, are characterized by a near-pure CO2 composition with moderate to high densities (up to 1.154 g/cm3). The highest density fluid inclusions recorded in this study occur within the mafic granulites from Sittampundi (0.968–1.154 g/cm3) and Kanji Malai (1.092–1.116 g/cm3). In some cases, carbonate minerals such as dolomite and calcite are associated with the CO2-rich fluid inclusions. The composition and densities of the later generation fluids closely match with those of the CO2-bearing fluid inclusions reported from ultrahigh-temperature granulites occurring proximal to the eclogite–high pressure granulite suite within this suture zone, and suggest a common tectonic link for the fluid regime. We evaluate the fluid characteristics associated with convergent plate margin processes and propose that the early aqueous fluids probably associated with the eclogites were consumed during the formation of the retrograde hydrous mineral assemblages, whereas the fluid regime of the high-pressure and ultrahigh-temperature granulites was mostly CO2-dominated. The tectonic setting of the rocks along a collisional suture marking the trace along which crustal blocks were welded through subduction–collision process is in favor of a model involving the derivation of CO2 from sub-lithospheric sources such as a carbonated tectosphere invaded by hot asthenosphere, or underplated mafic magmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号