首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
测绘学   1篇
地球物理   7篇
地质学   21篇
海洋学   38篇
自然地理   22篇
  2021年   1篇
  2017年   1篇
  2016年   6篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  1998年   6篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
51.
This paper describes the characteristics of currents around Hokkaido using a current vector map compiled by chasing the displacement of sea marks on a pair of successive thermal infrared images taken from a satellite, NOAA-6. The points of some sea surface patterns showing distinctive features which can be commonly identified in both images are called Sea Marks≓. This sea mark chase method≓ has a great advantage over velocity measurements by boats or buoys, in that it gives a synoptic view of the velocity distribution over a broad sea area extending for some hundreds of miles on a short time scale of half a day.In order to investigate the current in the late fall of 1981, we used the data taken at 19:05 JST on 30 October and at 7:20 JST on 31 October. With these data taken with a 12 hr difference, the measurement accuracy of the speed of sea marks reached ±0.1 knot through geometrical correction. The velocity vectors of sea marks agreed with results of GEK measurements performed on those days, and also with the mean current pattern obtained in the past based on sea surface data.The most distinct features recognized were some cyclonic and anticyclonic eddies of the order of 100 km in diameter which dominated in the Kuril Basin of the Okhotsk Sea. They appeared clearly in the original NOAA images and their physical parameters were determined quantitatively from the vector map. These eddies were located in the region of decay of the Soya Warm Current and were rotating at a speed nearly as large as that of the current. The problems of what feeds energy to these eddies and how long they live remain to be solved in future studies.  相似文献   
52.
53.
The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78–85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85–92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4–5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at <~200 MPa, whereas magma evolves through a convective melt exchange between the main magma and mushy boundary layers when the magma body is located at >~200 MPa.  相似文献   
54.
In pelitic schists composed mainly of quartz and albite grains, the morphology of intergranular pores, which were filled with water, was studied by transmission electron microscopy (TEM). Although some pores are defined by crystallographic planes (F-face), most of their form has an ideal shape determined by interface tensions between grains and fluid. High-resolution TEM observations demonstrate that pore-free regions at grain boundaries are tight even at the nanometer scale, showing that the wetting angle is larger than 0° in this rock. The pore distribution in two-grain junctions can be compared to a "necklace microstructure" developed by instability of a fluid film along the boundary induced by microcracking. Wetting angles for pores located at grain edges of quartz and albite decrease in the order albite/albite, quartz/quartz, and quartz/albite. The quartz/quartz wetting angle in a calcite-free sample is smaller than that in a calcite-containing sample. This angle also changes due to grain misorientation. Our results confirm that solid-solid and solid-fluid interfacial energies control the geometry of intergranular fluid in natural rocks.  相似文献   
55.
A profiling float equipped with a fluorimeter, a dissolved oxygen (DO) sensor, and temperature and salinity sensors was deployed in the subtropical mode water (STMW) formation region of the North Pacific. It acquired quasi-Lagrangian, 5-day-interval time-series records from March to July 2006. The time-series distribution of chlorophyll showed a sustained and sizable subsurface maximum at 50–100 m, just above the upper boundary of the STMW, throughout early summer (May–July). The DO concentration in this lower euphotic zone (50–100 m) was almost constant and supersaturated in the same period, becoming more supersaturated with time. On the other hand, the DO concentration at 100–150 m near the upper boundary of the STMW decreased much more slowly compared with the main layer of STMW below 150 m, even though oxygen consumption by organisms was expected to be larger in the former depth range. The small temporal variations of DO in the lower euphotic zone and near the upper boundary of the STMW were reasonably explained by downward oxygen transport because of large diapycnal diffusion near the top of the STMW. Assuming that the oxygen consumption rate at 100–150 m was the same as that in the main layer of STMW and compensated by the downward oxygen flux, the diapycnal diffusivity was estimated to be 1.7 × 10−4 m2 s−1. Nitrate transport into the euphotic zone by the same large diffusion was estimated to be 0.8 mmol N m−2 day−1. All of the transported nitrate could have been used for photosynthesis by the phytoplankton; net community production was estimated to be 5.3 mmol C m−2 day−1.  相似文献   
56.
57.
Summary. The three-dimensional (3-D) shear wave structure of the mantle, down to the depth of about 900 km, is obtained by inverting waveforms of radial component seismograms. Radial component seismograms contain large amplitude overtone signals which circle the Earth as wave packets and are sometimes called X1, X2, X3, … We use data which contain R1, X1 and X2 and filtered between 2 and 10mHz. It is shown that, unless each seismogram is weighted, all seismograms are not fitted uniformly. Only data from large earthquakes are fitted and the final velocity anomalies are biased by the small number of large earthquake data. Resolution is good at shallow depths, becomes worse in the intermediate depth range between about 400 and 500 km and then becomes better at greater depth ranges (600–900km). Even though we use only spheroidal mode data, velocity anomalies in the shallow structure show excellent correlation with the age of the surface rocks of the Earth. In the deeper regions, between about 600 and 900km, South America shows a fast velocity anomaly which may indicate the slab penetration beyond 700 km there. Another region which shows a fast velocity anomaly is the Mariana trench, but other subduction regions do not show such features.  相似文献   
58.
59.
60.
Abstract. Northern Honshu is the most important area for mineral and oil resources in Japan. Many kuroko deposits and oil and gas fields are distributed in two belts along the northeast Japan arc, the kuroko metal‐belt on the Pacific side and the oil‐belt on the Sea of Japan side. The kuroko deposits are located mainly in the Green Tuff strata which formed as a result of submarine vol‐canism during the late Miocene and Pliocene. Most of the source rocks of the oil and gas deposits formed at the same time as the kuroko deposits and some of them are located in reservoirs of hydrothermally‐altered volcanic rocks in the Green Tuff region. There is general agreement that the kuroko deposits formed as a result of submarine hydrothermal and magmatic activity whereas almost all petroleum geologists and geochemists consider that hydrocarbon deposits were generated independently of such activity. Since the discovery of hydrothermally‐generated petroleum in the Guaymas Basin, Gulf of California, however, it is clear that petroleum can be formed almost instantaneously in terrestrial and submarine hydrothermal areas. The paleo‐northeastern Sea of Japan is therefore considered to be a potential area for hydrothermal petroleum generation because thick organic‐rich sediments overlie an active submarine volcanic area. Several lines of geological and geochemical evidence suggest the possibility of hydrothermally‐enhanced maturation of organic matter and the contribution of magmatic activity to the formation of these deposits. Although most of the oil and gas in northern Honshu has been generated conventionally as a consequence of the high geothermal gradients there, it appears that some of the oil and gas fields may have formed as a result of extensive hydrothermal and magmatic activity during the late Miocene to Pliocene. Because of the much steeper angle of the faults in the vicinity of the Hokuroku basin than in the Akita basin, the magmatic contribution to the kuroko mineralization would have been far greater than to the oil and gas deposits of the Niigata and Akita basins. We therefore propose a strong relationship between metal and oil and gas generation in northern Honshu based on the structure and tectonics of the northern Honshu arc‐backarc system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号