首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   25篇
  国内免费   1篇
测绘学   11篇
大气科学   11篇
地球物理   127篇
地质学   68篇
海洋学   37篇
天文学   4篇
综合类   3篇
自然地理   7篇
  2022年   1篇
  2020年   5篇
  2019年   5篇
  2018年   10篇
  2017年   9篇
  2016年   11篇
  2015年   16篇
  2014年   15篇
  2013年   19篇
  2012年   15篇
  2011年   22篇
  2010年   20篇
  2009年   20篇
  2008年   20篇
  2007年   7篇
  2006年   12篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   10篇
  2001年   1篇
  2000年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有268条查询结果,搜索用时 31 毫秒
191.
Multiple parameterization for hydraulic conductivity identification   总被引:2,自引:0,他引:2  
Tsai FT  Li X 《Ground water》2008,46(6):851-864
Hydraulic conductivity identification remains a challenging inverse problem in ground water modeling because of the inherent nonuniqueness and lack of flexibility in parameterization methods. This study introduces maximum weighted log-likelihood estimation (MWLLE) along with multiple generalized parameterization (GP) methods to identify hydraulic conductivity and to address nonuniqueness and inflexibility problems in parameterization. A scaling factor for information criteria is suggested to obtain reasonable weights of parameterization methods for the MWLLE and model averaging method. The scaling factor is a statistical parameter relating to a desired significance level in Occam's window and the variance of the chi-squares distribution of the fitting error. Through model averaging with multiple GP methods, the conditional estimate of hydraulic conductivity and its total conditional covariances are calculated. A numerical example illustrates the issue arising from Occam's window in estimating model weights and shows the usefulness of the scaling factor to obtain reasonable model weights. Moreover, the numerical example demonstrates the advantage of using multiple GP methods over the zonation and interpolation methods because GP provides better models in the model averaging method. The methodology is applied to the Alamitos Gap area, California, to identify the hydraulic conductivity field. The results show that the use of the scaling factor is necessary in order to incorporate good parameterization methods and to avoid a dominant parameterization method.  相似文献   
192.
Experimentally, a feasibility study for adsorption and catalytic pyrolysis of spill oils on Cu/ZSM-5 for recycling of light oils has been conducted in the present work. The adsorption and pyrolysis of model compounds such as heptane, toluene, and diesel (to stimulate the spill oils) on Cu/ZSM-5 have been investigated on a continuous fixed-bed reactor. By component fitted X-ray absorption near edge structural (XANES) spectroscopy, catalytic active species such as metallic copper (Cu) (77-84%) and Cu(2)O (6-7%) are found in the channels of ZSM-5 during pyrolysis of heptane or toluene. Pyrolysis of diesel effected by Cu/ZSM-5 yields gas (C(1)-C(5)) (32%) and light oil (68%) that can be used as auxiliary fuels.  相似文献   
193.
Cyclic loading tests and finite element analyses on six novel all‐steel buckling‐restrained braces (BRBs) are conducted using different loading patterns to investigate the core plate high‐mode buckling phenomenon. The proposed BRB is composed of a core member and a pair of identical restraining members, which restrains the core member by using bolted shim spacers. The design of the proposed BRB allows the core plate to be visually inspected immediately following a major earthquake. If necessary, the pair of restraining members can be conveniently disassembled, and the damaged core plate can be replaced. Test results indicate that the proposed BRBs can sustain large cyclic strain reversals and cumulative plastic deformations in excess of 400 times the yield strain. Experimental and analytical results confirm that the high‐mode buckling wavelength is related to the core plate thickness and the applied loading patterns. The larger the axial compressive strain is applied, the shorter the high‐mode buckling wavelength would be developed. The buckling wavelength is about 12 times the core plate thickness when the high‐mode buckling shape is fully developed. However, it reduces to about 10 times the core plate thickness when a compressive core strain reaches greater than 0.03. The high‐mode bucking wavelength can be satisfactorily predicted using the proposed method or from the finite element analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
194.
The rolling motion of mutually orthogonal rollers respectively sandwiched between two bearing plates in which one or both have V‐shaped sloping surfaces makes the sloped rolling‐type isolation device have an excellent in‐plane seismic isolation performance. In this study, the sloped rolling type isolation device in which a single roller moves between two V‐shaped sloping surfaces along each principle horizontal direction is refined by incorporating multi‐roller, built‐in damping, and pounding prevention mechanisms. The associated dynamic behavior is further clarified, and a simplified twin‐flag hysteretic model, which can be easily applied in most commercial computational tools is then proposed. Seismic simulation tests on the refined isolation devices (i.e. the sloped multi‐roller isolation devices) with different design parameters such as sloping angles of bearing plates and built‐in damping capabilities, together with a raised floor system by employing the sloped multi‐roller isolation devices, were conducted. Not only is the efficiency of the sloped multi‐roller isolation devices in seismically protecting the important objects, but also the practicability and accuracy of the proposed simplified numerical model in predicting the seismic responses of the sloped multi‐roller isolation devices is experimentally verified. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
195.
The corner gusset plates in a steel braced frame can be subjected to forces not only from the brace but also from the effects of the frame actions. In this study, several finite element models are constructed to analyze the gusset‐to‐beam and gusset‐to‐column interface forces. It is found that the frame actions affect the gusset interface force distributions significantly. A simplified strut model to represent the gusset plate is adopted to evaluate the frame action forces. In addition, the generalized uniform force method is adopted as it provides more freedom for designers to configure the gusset plate shapes than using the uniform force method. In this paper, a performance‐based design method is proposed. The gusset interface force demands take into account the combined effect of the brace maximum axial force capacity and the peak beam shear possibly developed in the frame. The specimen design and key results of a series of full‐scale three‐story buckling‐restrained braced frame (BRBF) hybrid tests are discussed. The gusset interface cracks observed at inter‐story drift greater than 0.03 radians can be well predicted by using the proposed design method. The BRBF tests and analyses confirm that the proposed design method is reasonable. The effectiveness of varying the width of gusset edge stiffeners in reducing the gusset tip stress concentrations is also investigated. This paper concludes with recommendations for the seismic design of BRBF corner gusset plates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
196.
The debonding mechanism has a significant effect on the performance of a buckling‐restrained brace (BRB). In this paper, a method for estimating the compression strength adjustment factor for any given BRB core strain is presented. Experimental investigations were conducted on four BRBs to examine the efficiency of four different debonding materials in reducing the difference between the cyclic peak compression and tension. Test results indicate that chloroprene rubber is very easy to install and very effective in minimizing the difference between the compressive and tensile capacities. The excellent performance of 13 full‐scale welded end‐slot BRBs (WES‐BRBs) is illustrated through experiments. Cyclic loading test results of a 12.5‐m long jumbo WES‐BRB reveal that its peak compressive strength exceeds 16,800 kN and its maximum core strain reaches 0.035. All WES‐BRBs show satisfactory performance with a very stable hysteresis response, modest peak compressive to tensile strength ratio, and very predictable axial stiffness. These specimens sustain a cumulative plastic deformation of greater than 400 times the yield deformation. The hysteresis responses can be satisfactorily predicted by using a two‐surface plasticity analytical model. Advantages of the welded end‐slot connections are also presented through a discussion on the effects of the BRB yield region length ratio on the effective stiffness, the yield story drift, and the core strain level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
197.
The problem of mantle metasomatism vs. crustal contamination in the genesis of arc magmas with different potassium contents has been investigated using new trace element and Sr–Nd–Pb isotopic data on the island of Vulcano, Aeolian arc. The analysed rocks range in age from 120 ka to the present day, and cover a compositional range from basalt to rhyolite of the high-K calc-alkaline (HKCA) to shoshonitic (SHO) and potassic (KS) series. Older Vulcano products (>30 ka) consist of HKCA–SHO rocks with SiO2=48–56%. They show lower contents of K2O, Rb and of several other incompatible trace element abundances and ratios than younger rocks with comparable degree of evolution. 87Sr/86Sr ranges from 0.70417 to 0.70504 and increases with decreasing MgO and compatible element contents. 206Pb/204Pb ratios display significant variations (19.31 to 19.76) and are positively correlated with MgO, 143Nd/144Nd (0.512532–0.512768), 207Pb/204Pb (15.66–15.71) and 208Pb/204Pb (39.21–39.49). Overall, geochemical and isotopic data suggest that the evolution of the older series was dominated by assimilation–fractional crystallisation (AFC) with an important role for continuous mixing with mafic liquids. Magmas erupted within the last 30 ka consist mostly of SHO and KS intermediate and acid rocks, with minor mafic products. Except for a few acid rocks, they display moderate isotopic variations (e.g. 87Sr/86Sr=0.70457–0.70484; 206Pb/204Pb=19.28–19.55, but 207Pb/204Pb=15.66–15.82), which suggest an evolution by fractional crystallisation, or in some cases by mixing, with little interaction with crustal material. The higher Sr isotopic ratios (87Sr/86Sr=0.70494–0.70587) of a few, low-volume, intermediate to acid rocks support differentiation by AFC at shallow depths for some magma batches. New radiogenic isotope data on the Aeolian islands of Alicudi and Stromboli, as well as new data for lamproites from central Italy, are also reported in order to discuss along-arc compositional variations and to evaluate the role of mantle metasomatism. Geochemical and petrological data demonstrate that the younger K-rich mafic magmas from Vulcano cannot be related to the older HKCA and SHO ones by intra-crustal evolutionary processes and point to a derivation from different mantle sources. The data from Alicudi and Stromboli suggest that, even though interaction between magma and wall rocks of the Calabrian basement during shallow level magma evolution was an important process locally, a similar interpretation can be extended to the entire Aeolian arc. Received: 27 September 1999 / Accepted: 24 May 2000  相似文献   
198.
The Raobazhai ultramafic body of the North Dabie Complex is re-interpreted as a mantle-derived peridotitic slice enclosed in, and isofacially metamorphosed with, surrounding granulite-to-amphibolite facies gneisses. The ultramafic sheet consists mainly of metaharzburgite, but includes subunits of metadunite and mylonitic lherzolite. The rocks contain spinel but neither garnet nor plagioclase. However, in the mylonitic lherzolite, fine-grained intergrowths of spinel, orthopyroxene and clinopyroxene outline domains resembling the habit of garnet in two dimensions; broad-beam microprobe analyses imply pseudomorphs after a pyropic garnet precursor. The mineral assemblage of the metadunite and metaharzburgite is: olivine (Fo92)+orthopyroxene (En92)+tremolitic-to-magnesiohornblende+Mg–Al-chromite, indicating amphibolite facies recrystallization. The mineral assemblage of the mylonitic lherzolite is: olivine (Fo90)+orthopyroxene (En90)+clinopyroxene+Cr-bearing spinel+pargasitic amphibole, indicative of granulite-to-amphibolite facies metamorphism. Phase equilibria and geothermometric estimations show that the Raobazhai meta-ultramafics have undergone at least three stages of recrystallization: (I) 950–990 °C, (II) 750–860 °C, and (III) 670–720 °C, assuming equilibrium in the spinel peridotite stability field ( c. 6–15 kbar), although an early, high-pressure stage (≥18 kbar) is probable, based on the inferred garnet pseudomorphs. Petrochemical and geothermobarometric data suggest that the ultramafic slice represents a fragment of the mantle wedge, tectonically incorporated into subducted continental crust and re-equilibrated at granulite-to-amphibolite facies conditions while being exhumed to shallow levels.  相似文献   
199.
A two‐story buckling‐restrained brace (BRB) frame was tested under bidirectional in‐plane and out‐of‐plane loading to evaluate the BRB stability and gusset plate design. The test comprised pseudo‐dynamic loadings using the 1999 Chi‐Chi earthquake scaled to the 50%, 10%, and 2% probability of exceedance in 50 years and a cyclic regime of increasing amplitudes of up to 3.0% story drift ratio (SDR). The specimen had a unique configuration where the beams were connected to the columns through shear tabs welded to the column flanges and bolted to the beam webs. Stable hysteretic behavior with only minor cracking at the gusset‐to‐column welds was observed under the pseudo‐dynamic tests, with maximum in‐plane and out‐of‐plane SDRs of 2.24% and 1.47% respectively. Stable behavior continued into the cyclic test where fracture of the gusset‐to‐column welds occurred in the first cycle to simultaneous bidirectional SDR of 3.0%. The observed BRB stability is consistent with a methodology developed for BRB frames under simultaneous in‐plane and out‐of‐plane drifts. The specimen behavior was studied using a finite element model. It was shown that gusset plates are subjected to a combination of BRB force and frame action demands, with the latter increasing the gusset‐to‐beam and gusset‐to‐column interface demands by an average of 69% and 83% respectively. Consistent with the test results, failure at the gusset‐to‐column interfaces is computed when frame action demands are included, thus confirming that not considering frame action demands may results in unconservative gusset plate designs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
200.
The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance‐constrained (CC) programming with Bayesian model averaging (BMA) as a BMA‐CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA‐CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA‐CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the “1500‐foot” sand and the “1700‐foot” sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号