首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  国内免费   1篇
地球物理   9篇
地质学   9篇
海洋学   6篇
天文学   2篇
自然地理   6篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有32条查询结果,搜索用时 546 毫秒
21.
22.
The Nankai Trough, Japan, is a subduction zone characterized by the recurrence of disastrous earthquakes and tsunamis. Slow earthquakes and associated tremor also occur intermittently and locally in the Nankai Trough and the causal relationship between slow earthquakes and large earthquakes is important to understanding subduction zone dynamics. The Nankai Trough off Muroto, Shikoku Island, near the southeast margin of the rupture segment of the 1946 Nankai earthquake, is one of three regions where slow earthquakes and tremor cluster in the Nankai Trough. On the Philippine Sea plate, the rifting of the central domain of the Shikoku Basin was aborted at ~15 Ma and underthrust the Nankai forearc off Muroto. Here, the Tosa-Bae seamount and other high-relief features, which are northern extension of the Kinan Seamount chain, have collided with and indented the forearc wedge. In this study, we analyzed seismic reflection profiles around the deformation front of accretionary wedge and stratigraphically correlated them to drilling sites off Muroto. Our results show that the previously aborted horst-and-graben structures, which were formed around the spreading center of the Shikoku Basin at ~15 Ma, were rejuvenated locally at ~6 Ma and more regionally at ~3.3 Ma and have remained active since. The reactivated normal faulting has enhanced seafloor roughness and appears to affect the locations of slow earthquakes and tremors. Rejuvenated normal faulting is not limited to areas near the Nankai Trough, and extends more than 200 km into the Shikoku Basin to the south. This extension might be due to extensional forces applied to the Philippine Sea plate, which appear to be driven by slab-pull in the Ryukyu and Philippine trenches along the western margin of the Philippine Sea plate.  相似文献   
23.
24.
The Japan Trench is a plate convergent zone where the Pacific Plate is subducting below the Japanese islands. Many earthquakes occur associated with plate convergence, and the hypocenter distribution is variable along the Japan Trench. In order to investigate the detailed structure in the southern Japan Trench and to understand the variation of seismicity around the Japan Trench, a wide-angle seismic survey was conducted in the southern Japan Trench fore-arc region in 1998. Ocean bottom seismometers (15) were deployed on two seismic lines: one parallel to the trench axis and one perpendicular. Velocity structures along two seismic lines were determined by velocity modeling of travel time ray-tracing method. Results from the experiment show that the island arc Moho is 18–20 km in depth and consists of four layers: Tertiary and Cretaceous sedimentary rocks, island arc upper and lower crust. The uppermost mantle of the island arc (mantle wedge) extends to 110 km landward of the trench axis. The P-wave velocity of the mantle wedge is laterally heterogeneous: 7.4 km/s at the tip of the mantle wedge and 7.9 km/s below the coastline. An interplate layer is constrained in the subducting oceanic crust. The thickness of the interplate layer is about 1 km for a velocity of 4 km/s. Interplate layer at the plate boundary may cause weak interplate coupling and low seismicity near the trench axis. Low P-wave velocity mantle wedge is also consistent with weak interplate coupling. Thick interplate layer and heterogeneous P-wave velocity of mantle wedge may be associated with the variation of seismic activity.  相似文献   
25.
Five lineaments on the volcanic Vøring Margin, NE Atlantic, have been identified in crustal scale models derived from Ocean Bottom Seismograph (OBS) data. It is suggested that the Vøring Basin can be divided in four compartments bounded by the Jan Mayen Fracture Zone/Lineament, a new lineament defined from this study, the Gleipne Lineament, the Surt Lineament and the Bivrost Lineament. The NW–SE trending Jan Mayen-, Gleipne- and Bivrost lineaments probably represent old zones of weakness controlling the onset of the early Eocene seafloor spreading, whereas the Surt- and New lineaments, rotated ca. 30° symmetrically from the azimuth of the Gleipne Lineament, may represent adjustment features related to the early Cretaceous/early Tertiary rifting. The longest landward extent of a lower crustal high-velocity body, assumed to represent intrusions related to the last phase of rifting, is found between the New Lineament and the Gleipne Lineament, where the body extends across the Helland Hansen Arch. Northeastwards in the Vøring Basin, the landward limit of the body steps gradually seawards, closely related to the interpreted lineaments. Northeast of the Gleipne Lineament, the body terminates close to the Fles Fault Complex, north of the Surt Lineament, it extends across the Nyk High, and northeast of the Bivrost Lineament the intrusions terminate around the Vøring Escarpment. Evidence for an interplay between active and passive rifting components is found on regional and local scales on the margin. The active component is evident through the decrease in magmatism with increased distance from the Icelandic plume, and the passive component is documented through the fact that all found crustal lineaments to a certain degree acted as barriers to magma emplacement. The increased thickness of the continental crust on the seaward side of the Vøring Escarpment, the upwarping of Moho and thinning of the lower crustal high-velocity layer in the western part of the Vøring Basin, as well as a strong shallowing of the Moho observed in parts of the area between the Jan Mayen Fracture Zone/Lineament and the New Lineament, can be explained by lithospheric delamination models.  相似文献   
26.
Defining the Jurassic-Cretaceous boundary is a controversy in stratigraphic study of the world. It has been widely accepted that this boundary can be defined at the bottom of Berriasian in Tethys, with the appearance of the ammonite Berriasella jacobi dating to ca. 145 Ma. However, it is difficult for the widespread terrestrial deposits in China to correlate with the international standard of marine facies. The Somanakamura Group in Japan is represented by a succession of marine-continental transitional strata. It provides a bridge of marine and nonmarine stratigraphic correlation. The ammonite and radiolarian fossils preserved in this group suggest an age from Bajocian to early Valanginian. The J-K boundary was defined in or atop the Tomizawa Formation of the group according to the ammonite data. The present authors study the fossil spores and pollen newly found from the Tomizawa and Koyamada formations. Three assemblages have been recognized. They are Assemblage 1 (Cyathidites-Classopollis) from the upper part of the Tomizawa Formation, Assemblage 2 (Cyathidites-Jiaohepollis) from the lower part of the Koyamada Formation, and Assemblage 3 (Cyathidites-Spheripollenites-Ephedripites) from the middle to upper part of the Koyamada Formation. With the reference of ammonite evidence, the J-K boundary can be defined between Assemblage 1 and Assemblage 2. This palynological J-K boundary can be correlated with that of terrestrial sequence in China. However, local biostratigraphy imply that the continental J-K boundary in China is of 135 or 137 Ma age. It has a considerable discrepancy from the marine standard. Biogeographically, the distribution pattern of spores and pollen in southern China is in accordance with that in the Somanakamura Group, which parallels the Tuchengzi Formation in northeastern China. By the palynological correlation between the Somanakamura Group and the strata in southern China, and then with the sequence in northeastern China, it is suggested that the continental J-K boundary is located in the Tuchengzi Formation.  相似文献   
27.
28.
A total of 13 regional Ocean Bottom Seismograph (OBS) profiles with an accumulated length of 2207 km acquired on the Vøring Margin, NE Atlantic have been travel time modelled with regards to S-waves. The Vp/Vs ratios are found to decrease with depth through the Tertiary layers, which is attributed to increased compaction and consolidation of the rocks. The Vp/Vs ratio in the intra-Campanian to mid-Campanian layer (1.75–1.8) in the central Vøring Basin is significantly lower than for the layers above and beneath, suggesting higher sand/shale ratio. This layer was confirmed by drilling to represent a layer of sandstone. This mid-Cretaceous ‘anomaly’ is also present in the northern Vøring Basin, as well as on the southern Lofoten Margin further north. The Vp/Vs ratio in the extrusive rocks on the Vøring Plateau is estimated to be 1.85, conformable with mafic (basaltic) rocks. Landward of the continent/ocean transition (COT), the Vp/Vs ratio in the layer beneath the volcanics is estimated to be 1.67–1.75. These low values suggest that this layer represents sedimentary rocks, and that the sand/shale ratio might be relatively high here. The Vp/Vs ratio in the crystalline basement is estimated to be 1.67–1.75 in the basin and on the landward part of the Vøring Plateau, indicating the presence of granitic/granodioritic continental crust. In the lower crust, the Vp/Vs ratio in the basin decreases uniformly from southwest to northeast, from 1.85–1.9 to 1.68–1.73, suggesting a gradual change from mafic (gabbroic) to felsic (granodioritic) lower crust. Significant (3–5%) azimuthal S-wave anisotropy is observed for several sedimentary layers, as well as in the lower crust. All these observations can be explained by invoking the presence of liquid-filled microcracks aligned vertically along the direction of the present day maximum compressive stress (NW–SE).  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号