首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   1篇
测绘学   2篇
大气科学   5篇
地球物理   17篇
地质学   29篇
海洋学   1篇
天文学   5篇
自然地理   2篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   4篇
  2010年   6篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1994年   1篇
  1981年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1960年   1篇
  1939年   1篇
排序方式: 共有61条查询结果,搜索用时 468 毫秒
51.
We apply detrended fluctuation analysis (DFA) on fluxgate and search-coil data in ULF range (scales 10–90 s or 0.1–0.011 Hz) for the months January–April 2009 available from the South European GeoMagnetic Array stations: Castello Tesino (CST), Ranchio (RNC), and L’Aquila (AQU) in Italy; Nagycenk (NCK) in Hungary; and Panagyuriste (PAG) in Bulgaria. DFA is a data processing method that allows for the detection of scaling behaviors in observational time series even in the presence of non-stationarities. The H and Z magnetic field components at night hours (00-03 UT, 01–04 LT) and their variations at the stations CST, AQU, NCK, and PAG have been examined and their scaling characteristics are analyzed depending on geomagnetic and local conditions. As expected, the scaling exponents are found to increase when the K p index increases, indicating a good correlation with geomagnetic activity. The scaling exponent reveals also local changes (at L’Aquila), which include an increase for the Z (vertical) component, followed by a considerable decrease for the X (horizontal) component in the midst of February 2009. Attempts are made to explain this unique feature with artificial and/or natural sources including the enhanced earthquake activity in the months January–April 2009 at the L’Aquila district.  相似文献   
52.
53.
18O, D, and H2O+ contents were measured for whole-rock specimens of granitoid rocks from 131 localitics in California and southwestern Oregon. With 41 new determinations in the Klamath Mountains and Sierra Nevada, initial strontium isotope ratios are known for 104 of these samples. Large variations in 18O (5.5 to 12.4), D (–130 to –31), water contents (0.14 to 2.23 weight percent) and initial strontium isotope ratios (0.7028 to 0.7095) suggest a variety of source materials and identify rocks modified by secondary processes. Regular patterns of variation in each isotopic ratio exist over large geographical regions, but correlations between the ratios are generally absent except in restricted areas. For example, the regular decrease in D values from west to east in the Sierra Nevada batholith is not correlative with a quite complex pattern of 18O values, implying that different processes were responsible for the isotopic variations in these two elements. In marked contrast to a good correlation between (87Sr/86Sr)o and 18O observed in the Peninsular Ranges batholith to the south, such correlations are lacking except in a few areas. D values, on the other hand, correlate well with rock types, chemistry, and (87Sr/86Sr)o except in the Coast Ranges where few of the isotopic signatures are primary. The uniformly low D values of samples from the Mojave Desert indicate that meteoric water contributed much of the hydrogen to the rocks in that area. Even so, the 18O values and 18O fractionations between quartz and feldspar are normal in these same rocks.This reconnaissance study has identified regularities in geochemical parameters over enormous geographical regions. These patterns are not well understood but merit more detailed examination because they contain information critical to our understanding of the development of granitoid batholiths.  相似文献   
54.
Recent seismicity in and around the Gargano Promontory, an uplifted portion of the Southern Adriatic Foreland domain, indicates active E–W strike-slip faulting in a region that has also been struck by large historical earthquakes, particularly along the Mattinata Fault. Seismic profiles published in the past two decades show that the pattern of tectonic deformation along the E–W-trending segment of the Gondola Fault Zone, the offshore counterpart of the Mattinata Fault, is strikingly similar to that observed onshore during the Eocene–Pliocene interval. Based on the lack of instrumental seismicity in the south Adriatic offshore, however, and on standard seismic reflection data showing an undisturbed Quaternary succession above the Gondola Fault Zone, this fault zone has been interpreted as essentially inactive since the Pliocene. Nevertheless, many investigators emphasised the genetic relationships and physical continuity between the Mattinata Fault, a positively active tectonic feature, and the Gondola Fault Zone. The seismotectonic potential of the system formed by these two faults has never been investigated in detail. Recent investigations of Quaternary sedimentary successions on the Adriatic shelf, by means of very high-resolution seismic–stratigraphic data, have led to the identification of fold growth and fault propagation in Middle–Upper Pleistocene and Holocene units. The inferred pattern of gentle folding and shallow faulting indicates that sediments deposited during the past ca. 450 ka were recurrently deformed along the E–W branch of the Gondola Fault Zone.We performed a detailed reconstruction and kinematic interpretation of the most recent deformation observed along the Gondola Fault Zone and interpret it in the broader context of the seismotectonic setting of the Southern Apennines-foreland region. We hypothesise that the entire 180 km-long Molise–Gondola Shear Zone is presently active and speculate that also its offshore portion, the Gondola Fault Zone, has a seismogenic behaviour.  相似文献   
55.
56.
Solute transport in rivers and streams with hyporheic zone exchange and/or in-stream storage is typically affected by the prevailing flow rate. The research reported here focuses on stream tracer experiments repeated many times along the same Austrian (Mödlingbach) and Italian (Torrente Lura) channel reaches to characterize parameter dependency on flow rate. Both groups of data sets showed an increase of storage zone area and main stream area with discharge. In either case, a strong negative correlation was obtained between storage zone residence time and flow rate. From the Mödlingbach data, no clear relationship with Q emerged for the dispersion coefficient and the dead zone ratio, whereas Torrente Lura showed a clear positive correlation of the dispersion coefficient with the flow rate and a slightly negative Q-dependency for the dead zone ratio. Mödlingbach and Torrente Lura results are presented against the background of other repeat experiments reported in literature.  相似文献   
57.
58.
An advanced model aimed at describing the problem of dispersion in theconvective boundary layer is proposed. The pollutant particles are groupedin clusters and modelled as Gaussian puffs. The expansion of each puff ismodelled according to the concept of relative dispersion and expressed interms of the spectral properties of the energy containing eddies of the turbulent field. The centre of mass of each puff is moved along a stochastic trajectory, obtained using a Lagrangian stochastic model and filtering the velocity with a recursive Kalman filter. At any instant, a filtering procedure, depending both on travel time and on puff size, acts to select spectral components involved in the expansion and in the meandering of the puff. Such an approach requires only a moderate number of puff releases, so that the proposed model is faster to run than a standard Lagrangian model. On the other hand, unlike the traditional puff model, it allows us to simulate both expansion and meandering of the puff. Therefore, it is well suited to simulate dispersion when the turbulent structures are larger thanthe plume dimensions, as for example in convective conditions. Being based onspectral formulations in both Eulerian and Lagrangian parts, the model is consistent in all the turbulent parameterizations utilised. Comparisons with a standard Lagrangian particle model as well as with a classical convective experimental dataset show good performance of the proposed model.  相似文献   
59.
Typical low-rise masonry buildings consist of unreinforced masonry (URM) walls covered with various timber roof configurations generally supported or finished by masonry gables. Post-earthquake observations and experimental outcomes highlighted the large vulnerability of the URM gables to the development of overturning mechanisms, both because of the inertial out-of-plane excitation and the in-plane timber diaphragm deformability. This paper presents the static and dynamic experimental seismic performance of three full-scale roofs tested via quasi-static cyclic and shake table tests. Two of them were tested as part of a whole full scale one-storey and two-storey building. A single-degree-of-freedom (SDOF) numerical model is calibrated against experimental data and proposed for the analysis of this roof typology's dynamic behaviour. Several sets of analyses were conducted to assess the vulnerability of these structural components and to study the effect of the whole building's characteristics (eg, number of storeys and structural stiffness and strength) on the seismic performance of this roof typology.  相似文献   
60.
The assessment of the out-of-plane response of masonry structures has been largely investigated in literature assuming that walls respond as rigid or semi-rigid bodies, and relevant equations of motion of single-degree-of-freedom and multi-degree of freedom systems have been proposed. Therein, energy dissipation has been usually modelled resorting to the classical hypotheses of impulsive dynamics, delivering a velocity-reduction coefficient of restitution applied at impact. In fewer works, a velocity-proportional damping force has been introduced, by means of a viscous coefficient being constant or variable. A review of such models is presented, a criterion for equivalence of dissipated energy is proposed, equations predicting equivalent viscous damping ratios are derived and compared with experimental responses. Finally, predictive equations are examined in terms of incremental dynamic analyses for large sets of natural ground motions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号