首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   248篇
  免费   5篇
测绘学   1篇
大气科学   29篇
地球物理   65篇
地质学   87篇
海洋学   20篇
天文学   34篇
综合类   3篇
自然地理   14篇
  2024年   2篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2020年   8篇
  2019年   6篇
  2018年   5篇
  2017年   11篇
  2016年   9篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   10篇
  2011年   11篇
  2010年   9篇
  2009年   21篇
  2008年   12篇
  2007年   11篇
  2006年   8篇
  2005年   8篇
  2004年   9篇
  2003年   10篇
  2002年   11篇
  2001年   6篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   2篇
  1983年   4篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
排序方式: 共有253条查询结果,搜索用时 875 毫秒
11.
A curious observation has been made on radial receiver functions calculated from teleseisms recorded by 29 broad-band seismometers distributed over Iceland. The arrival time of the direct P phase of the radial receiver functions depends critically upon the azimuth of the teleseismic source. For a seismic station in West Iceland, the direct P  phase of the radial receiver function arrives consistently later for easterly source azimuths than for westerly source azimuths. The reverse applies for stations in East Iceland. In the original seismograms, the delayed P phase of the receiver function appears up to 450 ms later on the radial than on the vertical component. The seismometer locations in East and West Iceland are separated by the Neovolcanic Zone, a constructive plate boundary. The delayed P phases occur for seismic rays travelling across this zone. However, it is not obvious how wave propagation across the plate boundary zone could cause the observed delays. The tentative explanation proposed here involves the regional dip of the Icelandic lava sequences towards the Neovolcanic Zone. A dipping interface at shallow depth results in a P–S converted phase arriving shortly after the P phase. These phases cannot be separated in the radial receiver functions, given the bandwidth of the observed signals. However, a calculation of receiver functions from estimates of the P , SV and SH wavefields clearly reveals a P–S converted phase at about 500 ms for easterly source azimuths in West Iceland and for westerly source azimuths in East Iceland. The amplitudes of the direct P phase and the P–S phase converted at a dipping interface would be expected to vary strongly with azimuth in accordance with the observed behaviour.  相似文献   
12.
Paleovegetation maps were reconstructed based on a network of pollen records from Australia, New Zealand, and southern South America for 18 000, 12000, 9000, 6000, and 3000 BP and interpreted in terms of paleoclimatic patterns. These patterns permitted us to speculate on past atmospheric circulation in the South Pacific and the underlying forcing missing line mechanisms. During full glacial times, with vastly extended Australasian land area and circum-Antarctic ice-shelves, arid and cold conditions characterized all circum-South Pacific land areas, except for a narrow band in southern South America (43° to 45°S) that might have been even wetter and moister than today. This implies that ridging at subtropical and mid-latitudes must have been greatly increased and that the storm tracks were located farther south than today. At 12000 BP when precipitation had increased in southern Australia, New Zealand, and the mid-latitudes of South America, ridging was probably still as strong as before but had shifted into the eastern Pacific, leading to weaker westerlies in the western Pacific and more southerly located westerlies in the eastern Pacific. At 9000 BP when, except for northernmost Australia, precipitation reached near modern levels, the south Pacific ridges and the westerlies must have weakened. Because of the continuing land connection between New Guinea and Australia, and reduced seasonality, the monsoon pattern had still not developed. By 6000 BP, moisture levels in Australia and New Zealand reached their maximum, indicating that the monsoon pattern had become established. Ridging in the South Pacific was probably weaker than today, and the seasonal shift of the westerlies was stronger than before. By 3000 BP essentially modern conditions had been achieved, characterized by patterns of high seasonal variability.Contribution to Clima Locarno — Past and Present Climate Dynamics; Conference September 1990, Swiss Academy of Sciences — National Climate Program  相似文献   
13.
The Betic Cordillera (Southern Spain) acquired its present configuration during the Neogene. The formation, evolution and total or partial destruction of Neogene sedimentary basins were highly controlled by the geodynamic situations and the positions of the basins in the Betic Cordillera. It is impossible to reconstruct the geometry of basins formed during the Early and Middle Miocene, concurrently with the westward drift of the Internal Zones, because in many cases only small outcrops remain. The basins formed on the mobile substratum (the Internal Zones) are characterized by a sedimentary infill made up of synorogenic deposits, which were intensely deformed towards the end of the Middle Miocene, and which were heavily eroded before the beginning of the Late Miocene. In the External Zones, deposition mainly took place in the North Betic Strait, an area across which there was wide communication between the Atlantic and the Mediterranean, which received huge olistostromic masses in its more mobile sector (the foredeep basin), and which evolved differently in its eastern and western sectors. The palaeogeography of the Cordillera changed radically at the beginning of the Late Miocene, when the westward drift of the Internal Zones ceased. During this time the North Betic Strait disappeared and, in what had been its northwestern half approximately, the Guadalquivir Basin became individualized. This basin, which was located between the Betic Chain and the emerged Hercynian Massif, acquired a structure similar to that of the present basin and its extension was also similar to that of the present Neogene outcrops. Intramontane basins became individualized in the recently formed and progressively emerged mountain chain, reaching a development and size in this Cordillera much greater than in other Alpine chains. These basins are characterized by their thick infills, which are unconformable on the folded and deformed substratum, and which can be subdivided according to the different movements of the fault sets that controlled their evolution.  相似文献   
14.
Fossil beetles and pollen were examined from an intermorainal bog at Puerto Edén, Isla Wellington, Chile (latitude 49°08'S, longitude 74°25'W). Wood from near the base of the section has an age of 12 960 ± 150 yr BP. Occurrence of flightless beetle species in the basal peat sample is evidence that some members of the biota survived the last glacial maximum in refugia. The assumption that the Chilean Channels were entirely ice-covered is incorrect. Plants and insects that invaded the deglaciated terrain were those of an Empetrum heathland in which patches of Nothofagus forest were restricted to sheltered locations. The climate supporting the heathland is inferred to have been windier and probably drier than that of the present day. From 13 000 yr BP to 9500 yr BP Nothofagus forest expanded, possibly in response to less windiness and more available moisture. Neither the fossil beetle nor pollen data support a return to significantly colder conditions between 11 000 and 10 000 yr BP at the time of the Younger Dryas Stade. From 9500 to 5500 yr BP the climate was as wet as that of the present day, based on an increased representation of the pollen of moorland plants and of aquatic beetle species. From 5500 to 3000 yr BP the climate was drier, as indicated by the expansion of Empetrum heath and the reduction in mesic habitats. From 3000 yr BP to the present-day mesic habitats dominated as the climate returned to a wetter mode. The alternatively wetter and drier episodes are attributed to latitudinal shifts in the position of storm tracks in the belt of Southern Westerlies.  相似文献   
15.
Frequently, regionalized positive variables are treated by preliminarily applying a logarithm, and kriging estimates are back-transformed using classical formulae for the expectation of a lognormal random variable. This practice has several problems (lack of robustness, non-optimal confidence intervals, etc.), particularly when estimating block averages. Therefore, many practitioners take exponentials of the kriging estimates, although the final estimations are deemed as non-optimal. Another approach arises when the nature of the sample space and the scale of the data are considered. Since these concepts can be suitably captured by an Euclidean space structure, we may define an optimal kriging estimator for positive variables, with all properties analogous to those of linear geostatistical techniques, even for the estimation of block averages. In this particular case, no assumption on preservation of lognormality is needed. From a practical point of view, the proposed method coincides with the median estimator and offers theoretical ground to this extended practice. Thus, existing software and routines remain fully applicable.  相似文献   
16.
 Shiveluch Volcano, located in the Central Kamchatka Depression, has experienced multiple flank failures during its lifetime, most recently in 1964. The overlapping deposits of at least 13 large Holocene debris avalanches cover an area of approximately 200 km2 of the southern sector of the volcano. Deposits of two debris avalanches associated with flank extrusive domes are, in addition, located on its western slope. The maximum travel distance of individual Holocene avalanches exceeds 20 km, and their volumes reach ∼3 km3. The deposits of most avalanches typically have a hummocky surface, are poorly sorted and graded, and contain angular heterogeneous rock fragments of various sizes surrounded by coarse to fine matrix. The deposits differ in color, indicating different sources on the edifice. Tephrochronological and radiocarbon dating of the avalanches shows that the first large Holocene avalanches were emplaced approximately 4530–4350 BC. From ∼2490 BC at least 13 avalanches occurred after intervals of 30–900 years. Six large avalanches were emplaced between 120 and 970 AD, with recurrence intervals of 30–340 years. All the debris avalanches were followed by eruptions that produced various types of pyroclastic deposits. Features of some surge deposits suggest that they might have originated as a result of directed blasts triggered by rockslides. Most avalanche deposits are composed of fresh andesitic rocks of extrusive domes, so the avalanches might have resulted from the high magma supply rate and the repetitive formation of the domes. No trace of the 1854 summit failure mentioned in historical records has been found beyond 8 km from the crater; perhaps witnesses exaggerated or misinterpreted the events. Received: 18 August 1997 / Accepted: 19 December 1997  相似文献   
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号