首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   746篇
  免费   24篇
  国内免费   15篇
测绘学   17篇
大气科学   43篇
地球物理   169篇
地质学   293篇
海洋学   80篇
天文学   103篇
综合类   8篇
自然地理   72篇
  2023年   5篇
  2022年   9篇
  2021年   11篇
  2020年   12篇
  2019年   20篇
  2018年   23篇
  2017年   24篇
  2016年   28篇
  2015年   22篇
  2014年   22篇
  2013年   41篇
  2012年   27篇
  2011年   44篇
  2010年   30篇
  2009年   31篇
  2008年   45篇
  2007年   35篇
  2006年   29篇
  2005年   31篇
  2004年   24篇
  2003年   22篇
  2002年   12篇
  2001年   18篇
  2000年   6篇
  1999年   11篇
  1998年   11篇
  1997年   6篇
  1996年   9篇
  1995年   9篇
  1994年   12篇
  1993年   7篇
  1992年   10篇
  1991年   5篇
  1989年   4篇
  1988年   4篇
  1987年   10篇
  1986年   5篇
  1985年   10篇
  1984年   9篇
  1982年   8篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   8篇
  1976年   10篇
  1975年   4篇
  1974年   9篇
  1971年   6篇
  1969年   3篇
  1963年   4篇
排序方式: 共有785条查询结果,搜索用时 15 毫秒
761.
Multiple causes of Earth's earliest global glaciation   总被引:1,自引:0,他引:1  
In the context of Earth System evolution, the causal factors driving the Palaeoproterozoic Huronian global glaciations occupy a central position. The rise of O2 at 2320 Ma, which eliminated most of the methane, was not apparently a single cause triggering the glaciation. At c. 2450 Ma mantle‐plume‐driven continental uplifts led to the emplacement of voluminous continental flood‐basalts in low latitudes that were subsequently dissected by rifting. Major topographical features and continental drainage patterns were most likely similar to those in younger continental flood‐basalt provinces and would have enabled deep weathering and erosion of extensive basalt‐covered continental areas. Intense consumption of atmospheric CO2 by silicate weathering of fresh basaltic surfaces would have been further amplified by a constant organic carbon burial rate. These factors, similar to those of younger glacial periods, in combination with the diminished CH4 greenhouse led to an onset of global cooling at the million‐year timescale.  相似文献   
762.
Following a recent suggestion of a new rate equation specifically for the batch dissolution of salts in solutions containing a common ion, this paper describes an analytic solution to its integration. The equation has been tested by dissolving 250???m gypsum- rock particles in water (26.7?g?l?1) containing various mixtures of sodium and calcium chlorides, all at an ionic strength of 0.060?M. The model fitted the experimental curves very well and showed that the dissolution slowed slightly overall when the initial calcium concentration was increased from 0 to 0.020?M. The dissolution curves were also modelled as a simple exponential, whence the fit was comparable to that with the new equation, with the exponential rate constant varying between 0.025 and 0.019 (±0.0004) for 0 and 0.020?M initial calcium concentration, respectively. Conventional Electrolyte theory from thermodynamics is used to show that the new equation is an inevitable consequence of modelling the net rate of dissolution in terms of a back reaction that is first order with respect to the dissolved substance, as per the recently described Shrinking Object model. Moreover, it is shown how the simple exponential model (which is a well-used plot in dissolution kinetics) provides the linear end-member to an infinite number of curvilinear plots of rate of dissolution versus reaction progress developed by the new model??it is the special case where common ion is absent. The results are now judged good enough to identify a generic batch dissolution rate equation for all salts dissolving without significant complication from either contaminants or their own gaseous species, as in calcium carbonate dissolution.  相似文献   
763.
764.
Earth observation satellites produce large amounts of images/data that not only must be processed and preserved in reliable geospatial platforms but also efficiently disseminated among partners/researchers for creating derivative products through collaborative workflows. Organizations can face up this challenge in a cost-effective manner by using cloud services. However, outages and violations of integrity/confidentiality associated to this technology could arise. This article presents FedIDS, a suite of cloud-based components for building dependable geospatial platforms. The Fed component enables organizations to build shared geospatial data infrastructure through federation of independent cloud resources to withstand outages, whereas IDS avoids violations of integrity/confidentiality of images/data in sharing information and collaboration workflows. A FedIDS prototype, deployed in Spain and Mexico, was evaluated through a study case based on a satellite imagery captured by a Mexican antenna and another based on a satellite imagery of a European observation mission. The acquisition, storage and sharing of images among users of the federation, the exchange of images between Mexican and Spanish sites and outage scenarios were evaluated. The evaluation revealed the feasibility, reliability and efficiency of FedIDS, in comparison with available solutions, in terms of performance, storage consume and integrity/confidentiality when sharing images/data in collaborative scenarios.  相似文献   
765.
Natural Hazards - Debris flows represent great hazard to humans due to their high destructive power. Understanding their hydrogeomorphic dynamics is fundamental in hazard assessment studies,...  相似文献   
766.
The Southwest prospect is located at the southwestern periphery of the Sto. Tomas II porphyry copper–gold deposit in the Baguio District, northwestern Luzon, Philippines. The Southwest prospect hosts a copper‐gold mineralization related to a complex of porphyry intrusions, breccia facies, and overlapping porphyry‐type veinlets emplaced within the basement Pugo metavolcanics rocks and conglomerates of the Zigzag Formation. The occurrences of porphyry‐type veinlets and potassic alteration hosted in the complex are thought to be indications of the presence of blind porphyry deposits within the Sto. Tomas II vicinity. The complex is composed of at least four broadly mineralogically similar dioritic intrusive rocks that vary in texture and alteration type and intensity. These intrusions were accompanied with at least five breccia facies that were formed by the explosive brecciation, induced by the magmatic–hydrothermal processes and phreatomagmatic activities during the emplacement of the various intrusions. Hydrothermal alteration assemblages consisting of potassic, chlorite–magnetite, propylitic and sericite–chlorite alteration, and contemporaneous veinlet types were developed on the host rocks. Elevated copper and gold grades correspond to (a) chalcopyrite–bornite assemblage in the potassic alteration in the syn‐mineralization early‐mineralization diorite (EMD) and contemporaneous veinlets and (b) chalcopyrite‐rich mineralization associated with the chalcopyrite–magnetite–chlorite–actinolite±sericite veinlets contemporaneous with the chlorite–magnetite alteration. Erratic remarkable concentrations of gold were also present in the late‐mineralization Late Diorite (LD). High XMg of calcic amphiboles (>0.60) in the intrusive rocks indicate that the magmas have been oxidizing since the early stages of crystallization, while a gap in the composition of Al between the rim and the cores of the calcic amphiboles in the EMD and LD indicate decompression at some point during the crystallization of these intrusive rocks. Fluid inclusion microthermometry suggests the trapping of immiscible fluids that formed the potassic alteration, associated ore mineralization, and sheeted quartz veinlets. The corresponding formation conditions of the shallower and deeper quartz veinlets were estimated at pressures of 50 and 30 MPa and temperatures of 554 and 436°C at depths of 1.9 and 1.1 km. Temperature data from the chlorite indicate that the chalcopyrite‐rich mineralization associated with the chlorite–magnetite alteration was formed at a much lower temperature (ca. 290°C) than the potassic alteration. Evidence from the vein offsetting matrix suggests multiple intrusions within the EMD, despite the K‐Ar ages of the potassic alteration in EMD and hornblende in the LD of about the same age at 3.5 ± 0.3 Ma. The K‐Ar age of the potassic alteration was likely to be thermally reset as a result of the overprinting hydrothermal alteration. The constrained K‐Ar ages also indicate earlier formed intrusive rocks in the Southwest prospect, possibly coeval to the earliest “dark diorite” intrusion in the Sto. Tomas II deposit. In addition, the range of δ34S of sulfide minerals from +1.8‰ to +5.1‰ in the Southwest prospect closely overlaps with the rest of the porphyry copper and epithermal deposits in the Sto. Tomas II deposit and its vicinity. This indicates that the sulfides may have formed from a homogeneous source of the porphyry copper deposits and epithermal deposits in the Sto. Tomas II orebody and its vicinity. The evidence presented in this work proves that the porphyry copper‐type veinlets and the adjacent potassic alteration in the Southwest prospect are formed earlier and at a shallower level in contrast with the other porphyry deposits in the Baguio District.  相似文献   
767.
Acta Geotechnica - Currently, there are debates on the relationship between the effective stress and shear strength of unsaturated soils. Thus, it is imperative to present an efficient method that...  相似文献   
768.
正1.Introduction In response to the proposal by the Earth Science community of China,we are delighted to organize this special issue of Geoscience Frontiers(GSF)in honor of the work by Xuanxue Mo,Professor of Petrology and Geochemistry of China University of Geosciences(Beijing)and Academician of the Chinese Academy of Sciences,as a tribute to him on his 80th birthday.In his over 50 years of profes-  相似文献   
769.
The Hamersley Basin in Western Australia is one of the world's largest iron ore-producing regions, hosting two types of ore in banded iron formations: the high-grade martite-microplaty haematite and the supergene martite-goethite ores. With the high-grade ores almost entirely mined in the last decade, the supergene ores have more recently become the dominant resource of interest. Consequently, understanding the genesis of these martite-goethite deposits is a critical step for exploration. Yet, although various models exist, there is still no consensus on how these mineral resources formed, complicating the prediction of resource volume and location. Here, we show that the paleo-stratigraphic permeability anisotropy (with higher permeability along strata than across) controls the supergene mimetic enrichment transport process and, subsequently, the mineralisation distribution. We introduce a flow model that implicitly represents strata with a potential function that orients the permeability tensor accurately. The numerical solver uses automatic mesh adaptivity to deliver robust solutions. By accurately reproducing the mineralisation patterns in specific deposits, we identify and quantify the paleo-water table level and permeability anisotropy ratio as the two main controlling parameters for the mineralisation distribution. These insights provide new timing constraints for the mineralisation and the physical process of iron enrichment, suggesting much more potential mineralisation volume in the paleo-reconstructed zones than previously anticipated. These flow models allow us to draw geological conclusions with few a priori assumptions required for the genetic model in which the transport component is dominant. The predictive power of this methodology will allow targeted drilling to narrow down the prospective areas and lower exploration costs. Furthermore, the methodology's generality applies to other commodities in sedimentary basins involving supergene processes and will improve our understanding of various genetic models.  相似文献   
770.
Freshwater lakes are important sources of methane (CH4) emissions, by organic matter degradation under anaerobic conditions (methanogenesis). Previous studies suggest that lakes contribute up to 16 % of natural emissions. About 60 % of the CH4 produced is used as an energy source by methane-oxidizing bacteria (MOB—methanotrophs), which could support higher trophic levels, especially Chironomidae (Diptera). Because biogenic methane has a very low stable carbon isotope value, evidence of methane-derived organic-matter assimilation can be tracked by stable carbon isotope analysis in consumers such as chironomids. In some cases, however, chironomid δ13C values are not low enough to unambiguously demonstrate methanotroph assimilation and an alternative line of evidence is required. Analysis of ancient DNA (aDNA) from the methanotroph community preserved in lake sediment provides reliable information about past methane oxidation in freshwater lakes. A combination of these two approaches was used to study a sediment core from the deepest zone of Lake Narlay (Jura, France), which covers the last 1,500 years of sediment accumulation. Results show a significant change ca. AD 1600, with an increase in the proportion of MOB in the total bacteria community, and a decrease in chironomid head-capsule δ13C. These trends suggest assimilation of MOB by chironomid larvae, and account for up to 36 % of the chironomid biomass. The data also provide information about the feeding behavior of chironomids, with evidence for preferential assimilation of methanotroph type I and the NC10 phylum. The combination of aDNA analysis and carbon stable isotopes strengthens the reliability of inferences about carbon sources incorporated into chironomid biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号