首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  国内免费   2篇
大气科学   6篇
地球物理   6篇
地质学   8篇
海洋学   1篇
天文学   2篇
  2020年   1篇
  2018年   2篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   5篇
  2006年   1篇
  2000年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
21.
An important component of ionospheric plasma irregularity studies in the Indian low latitudes involves the study of the plasma bubbles which produce intense scintillations of the transionospheric satellite signals. Many such plasma bubble induced (FBI) scintillation events were identified while recording 244 MHz signal from the geostationary satellite Fleetsat (73°E) at Delhi (28.6°N, 77.2°E) during March-April 1991. This type of scintillations represents changes in plasma processes. These scintillations are spectrally analyzed using an autoregressive (AR) scheme, which is equivalent to maximum entropy method of spectrum analysis, amenable to extracting optimum spectral content from short data lengths (20–40 s). Each spectrum is assigned a level of detectability using the final prediction error (FPE) derived from the optimum filter order required to resolve the spectrum. Lower detectability together with a higher order filter indicate a higher level of coherence for the plasma irregularities (discrete structures). Consistent patterns for these scintillations emerge from the present analysis as follows: (1) the initial and final phases of a scintillation patch display quasiperiodic oscillations. Their corresponding spectra show dominant (Gaussian shaped) spectral features with detectability levels of –6 dB to –12 dB and requiring a higher order (>6) AR filter for their spectral resolution. These are most likely associated with discrete filament-like or sheet-like plasma structures that exist near the bubble walls. (2) Two main features of the scintillation spectra could be positively associated with the well-developed plasma bubble stage: (a) spectra displaying a power-law process with a single component spectral slope between 1.6 to 3.0. Generally such spectra are resolved with a 2nd order filter and have a 1 dB to 6 dB of detectability. (b) Spectra displaying a double slope, indicating an inner and an outer scale regime for the power-law irregularities. These spectra are resolved with higher order filters (>3 but <7) and possess detectability levels of –1 dB to 3 dB. These spectra display finer spectral changes, perhaps indicative of the nature of continuously evolving plasma irregularities. As an example, an analysis of a single scintillation patch is presented to highlight the geophysical significance of the present approach. Some important parameters used in the AR scheme of spectral analysis are given in the Appendix.  相似文献   
22.
The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud mod-el were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973,1974,1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter >20μm is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmos-pheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and ob-served rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L., which corresponds to the level at almost 3 / 4 th of the total verti-cal thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L.. The dominant physical mechanism of rain-formation in these summer monsoon clouds it the col-lision-coalescence process.  相似文献   
23.
Besides several thematic campaigns, utilizing a variety of platforms including satellites, ground-based networks have been established to improve our understanding of the role of aerosols in the changing monsoon climate. Two such widely known networks over the globe are ‘SKYNET’ and ‘AERONET’ with sun-sky radiometers as the principal equipment that characterizes aerosols and gases over different geographical locations under varied air mass conditions. Pune (18°43′N, 73°51′E, 559 m above mean sea level), a fast growing low-latitude, urban city in India, is one of the sites where Prede (POM-01L, SKYNET) and Cimel (CE-318, AERONET) Sun-sky radiometers have been in operation since 2004. These radiometers have been extensively used in several studies related to stand-alone and coupled aerosol-cloud-climate processes. The Prede instrument at this site is being augmented for the network of the Global Atmospheric Watch program of the World Meteorological Organization to facilitate data coordination through the World Data Center for Aerosols. The present study envisages understanding the response of atmospheric constituents, through simultaneous operation of the radiometers amongst others, for the rainfall activity over Pune during two contrasting monsoon years of 2008 (active, 98 % of long period average (LPA) rainfall over the whole country) and 2009 (weak, 78 % of LPA). The synthesis of data indicates that, apart from excellent agreement between the direct Sun observations, both radiometers capture well the monsoon features within the instrument density and efficacy of data retrieval algorithms involved. The meteorological fields from the ECMWF re-analysis and NOAA-HYSPLIT air-mass back-trajectory analysis during the study period have been utilized to explain the variations observed in the radiometer products.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号