首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   4篇
  国内免费   2篇
测绘学   6篇
大气科学   12篇
地球物理   16篇
地质学   23篇
海洋学   4篇
天文学   1篇
自然地理   7篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   3篇
  2013年   6篇
  2011年   2篇
  2010年   3篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   3篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1979年   4篇
  1970年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有69条查询结果,搜索用时 62 毫秒
31.
Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92?±?3 %; n?=?14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69?±?3 %; n?=?14) followed by <20 μm eukaryotes (19?±?1 %; n?=?14), and phycoerythrin containing cyanobacteria (4?±?1 %; n?=?14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.  相似文献   
32.
Iodine is one of the most problematic radioisotopes in the context of nuclear waste geological disposal due to its high mobility. Considerable effort has been dedicated to the measurement of its potential retardation during diffusive transport leading to conflicting results, from no retardation to significant retardation, leading in turn to considerable debate. The present study aims at providing new insights into this aspect of the iodine problem by careful quantification of iodine reservoirs in the Callovian-Oxfordian (COx) clay rock taken here as model material for these studies. The present study confirmed the ubiquitous presence of iodine at 1-5 mg kg−1 level in the COx clayey formation. The iodide concentration level in the porewater is also confirmed at a value in the range ∼20-40 μmol L−1, i.e. higher than the expected range of radio-iodine concentration in the far-field of the storage. Surprisingly, most of the iodine was found not to be associated with organic matter but rather in an inorganic form associated with carbonate minerals. This result has potentially significant implications for the fate of radio-iodine. In undisturbed far-field conditions, most natural iodine would not be accessible for isotopic exchange with radioactive iodine, reducing the effective Kd to negligible values. During laboratory experiments, good monitoring of the geochemical parameters (at least the Eh, pH, PCO2, [Ca] and [Mg]) is mandatory to avoid iodine-bearing carbonate precipitation and to enable rigorous interpretation of the iodide diffusion/retention experiments.  相似文献   
33.
The EU has established an aggressive portfolio with explicit near-term targets for 2020 – to reduce GHG emissions by 20%, rising to 30% if the conditions are right, to increase the share of renewable energy to 20%, and to make a 20% improvement in energy efficiency – intended to be the first step in a long-term strategy to limit climate forcing. The effectiveness and cost of extending these measures in time are considered along with the ambition and propagation to the rest of the world. Numerical results are reported and analysed for the contribution of the portfolio's various elements through a set of sensitivity experiments. It is found that the hypothetical programme leads to very substantial reductions in GHG emissions, dramatic increases in use of electricity, and substantial changes in land-use including reduced deforestation, but at the expense of higher food prices. The GHG emissions reductions are driven primarily by the direct limits. Although the carbon price is lower under the hypothetical protocol than it would be under the emissions cap alone, the economic cost of the portfolio is higher, between 13% and 22%.  相似文献   
34.
Short‐circuiting flow, commonly experienced in many constructed wetlands, reduces hydraulic retention times in unit wetland cells and decreases the treatment efficiency. A two‐dimensional (2‐D), physically based, distributed modelling approach was used to systematically address the effects of bathymetry and vegetation on short‐circuiting flow, which previously have been neglected or lumped in one‐dimensional wetland flow models. In this study, a 2‐D transient hydrodynamics with advection‐dispersion model was developed using MIKE 21 and calibrated with bromide tracer data collected at the Orlando Easterly Wetland Cell 7. The estimated topographic difference between short‐circuiting flow zone and adjacent area ranged from 0·3 to 0·8 m. A range of the Manning roughness coefficient at the short‐circuiting flow zone was estimated (0·022–0·045 s m?1/3). Sensitivity analysis of topographical and vegetative heterogeneity deduced during model calibration shows that relic ditches or other ditch‐shaped landforms and the associated sparse vegetation along the main flow direction intensify the short‐circuiting pattern, considerably affecting 2‐D solute transport simulation. In terms of hydraulic efficiency, this study indicates that the bathymetry effect on short‐circuiting flow is more important than the vegetation effect. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
35.
36.
Macquarie Island in the southwest Pacific Ocean (55°S) is unique as an exposed location for studying oceanic crust generated by slow seafloor spreading—regions where rocks are difficult to date using radiometric methods. Bolboforms, an extinct group of poorly known microplankton, in sediment intercalated with pillow lavas yield tight constraints (9.01–8.78 Ma) on the age of formation of the dominantly seafloor volcanic sequence constituting the south of the island. The occurrence of Bolboforma metzmacheri extends the known geographic range of this Late Miocene zonal marker species in the southwest Pacific. A monospecific calcareous nannoplankton flora (Reticulofenestra perplexa) accompanied by the foraminifer Neogloboquadrina pachyderma in sediment from the north part of the island indicates a slightly older age (9.5–9.3 Ma), consistent with a radiometric date (9.2 ± 0.4 Ma) from nearby volcanics. The new age data indicate that the ocean floor volcanic sequence formed early in the Late Miocene, possibly along short segments of a slow-spreading mid-ocean ridge. Bolboforms have potential to provide fine-scale dating in other similarly complex ridge systems that are difficult to date by other means.  相似文献   
37.
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100.  相似文献   
38.
39.
At an aviation gasoline spill site in Traverse City, Michigan, historical records indicate a positive correlation between significant rainfall events and increased concentrations of slightly soluble organic compounds in the monitoring wells of the site. To investigate the recharge effect on ground water quality due to infiltrating, water percolating past residual oil and into the saturated zone, an in situ infiltration experiment was performed at the site. Sampling cones were set at various depths below a circular test area, 13 feet (4 meters) in diameter. Rainfall was simulated by sprinkling the test area at a rate sufficiently low to prevent runoff. The sampling cones for soil-gas and ground water quality were installed in the unsaturated and saturated zones to observe the effects of the recharge process. At the time of the test, the water table was below the residual oil layer. The responses of the soil-gas and ground water quality were monitored during the recharge and drainage periods, which resulted from the sprinkling.
Infiltrated water was determined to have transported organic constituents of the residual oil, specifically benzene, toluene, ethylbenzene, and ortho-xylene (BTEX), into the ground water beneath the water table, elevating the aqueous concentrations of these constituents in the saturated zone. Soil-gas concentrations of the organic compounds in the unsaturated zone increased with depth and time after the commencement of infiltration. Reaeration of the unconfined aquifer via the infiltrated water was observed. It is concluded that water quality measurements are directly coupled to recharge events for the sandy type of aquifer with an overlying oil phase, which was studied in this work. Ground water sampling strategies and data analysis need to reflect the effect of recharge from precipitation on shallow, unconfined aquifers where an oil phase may be present.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号