首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   555篇
  免费   15篇
  国内免费   2篇
测绘学   20篇
大气科学   21篇
地球物理   145篇
地质学   163篇
海洋学   68篇
天文学   82篇
综合类   1篇
自然地理   72篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   7篇
  2016年   7篇
  2015年   9篇
  2014年   10篇
  2013年   32篇
  2012年   14篇
  2011年   29篇
  2010年   17篇
  2009年   16篇
  2008年   19篇
  2007年   16篇
  2006年   19篇
  2005年   13篇
  2004年   14篇
  2003年   24篇
  2002年   14篇
  2001年   11篇
  2000年   18篇
  1999年   8篇
  1998年   11篇
  1997年   13篇
  1996年   15篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1991年   8篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   10篇
  1986年   14篇
  1985年   14篇
  1984年   5篇
  1983年   8篇
  1982年   8篇
  1981年   13篇
  1980年   15篇
  1979年   9篇
  1978年   7篇
  1977年   3篇
  1976年   4篇
  1974年   10篇
  1973年   6篇
  1972年   3篇
  1968年   5篇
  1948年   3篇
排序方式: 共有572条查询结果,搜索用时 265 毫秒
21.
— Submarine and shoreline slope failures that accompany large earthquakes and large tsunamis are triggered by several mechanisms. Triggering mechanisms range from direct effects, such as inertial forces from earthquake shaking, to indirect effects, such as rapid drawdown that occurs when an earthquake-generated tsunami first approaches a shoreline. Soil shear strength also plays an important role in earthquake-related slope failures. Earthquakes change the shear strength of the soil by inducing excess pore water pressures. These excess pore water pressures change with time after the earthquake, resulting in changes in shear strength and slope stability with time. This paper reviews earthquake-related triggering mechanisms for submarine and shoreline slope failures. The variation in shear strength with time following an earthquake is examined and it is shown that delayed slope failures after an earthquake can occur as a result of changes in earthquake-induced excess pore water pressures and shear strength with time.  相似文献   
22.
Pn arrivals from mining-induced earthquakes on the edge of the Witwatersrand basin show that the P wavespeeds in the uppermost mantle are almost constant throughout most of the Kaapvaal craton. The presence of only small wavespeed variations allows the use of a simple method of estimating crustal thicknesses below the stations of the Kaapvaal broad-band network using Pn times that has been compared with results from receiver functions. One thousand three hundred thirty-seven Pn arrivals were used to derive crustal thicknesses at 46 stations on the Kaapvaal craton. The average crustal thicknesses for 19 centrally located stations on each of the northern and southern regions of the craton that yielded well-constrained thicknesses were 50.52±0.88 km and 38.07±0.85 km, respectively. In contrast, the corresponding average thicknesses determined from receiver functions were 43.58±0.57 km and 37.58±0.70 km, respectively. The systematically lower values for receiver functions in the northern part of the Kaapvaal craton that was affected by the Bushveld magmatism at 2.05 Ga, suggest that the receiver functions do not enable the petrological crust mantle boundary to be reliably resolved due to variations in composition and metamorphic grade in a mafic lower crust. The Pn times also suggest pervasive azimuthal anisotropy with maximum wavespeeds of about 8.40 km/s at azimuths of about 15° and 217° in the northern and southern regions of the craton, respectively, and minimum wavespeeds of about 8.25 km/s.  相似文献   
23.
24.
Interatomic potential parameters have been derived at simulated temperatures of 0 K and 300 K to model pyrite FeS2. The predicted pyrite structures are within 1% of those determined experimentally, while the calculated bulk modulus is within 7%. The model is also able to simulate the properties of marcasite, even though no data for this phase were included in the fitting procedure. There is almost no difference in results obtained for pyrite using the two potential sets; however, when used to model FeS2 marcasite, the potential fitted at 0 K performs better. The potentials have also been used to study the high-pressure behaviour of pyrite up to 44 GPa. The calculated equation of state gives good agreement with experiment and shows that the Fe–S bonds shorten more rapidly that the S–S dimer bonds. The behaviour of marcasite at high pressure is found to be similar to that of pyrite.  相似文献   
25.
The CUTLASS Finland HF radar has been operated in conjunction with the EISCAT Tromsø RF ionospheric heater facility to examine a ULF wave characteristic of the development of a field line resonance (FLR) driven by a cavity mode caused by a magnetospheric impulse. When the heater is on, striating the ionosphere with field-aligned ionospheric electron density irregularities, a large enough radar target is generated to allow post-integration over only 1 second. When combined with 15 km range gates, this gives radar measurements of a naturally occurring ULF wave at a far better temporal and spatial resolution than has been achieved previously. The time-dependent signature of the ULF wave has been examined as it evolves from a large-scale cavity resonance, through a transient where the wave period was latitude-dependent and the oscillation had the characteristics of freely ringing field lines, and finally to a very narrow, small-scale local field line resonance. The resonance width of the FLR is only 60 km and this is compared with previous observations and theory. The FLR wave signature is strongly attenuated in the ground magnetometer data. The characterisation of the impulse driven FLR was only achieved very crudely with the ground magnetometer data and, in fact, an accurate determination of the properties of the cavity and field line resonant systems challenges the currently available limitations of ionospheric radar techniques. The combination of the latest ionospheric radars and facilities such as the Tromsø ionospheric heater can result in a powerful new tool for geophysical research.  相似文献   
26.
27.
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号